Respiration in spiders (Araneae)

Abstract

Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anderson JF (1970) Metabolic rates in spiders. Comp Biochem Physiol 33:51–72

    CAS  PubMed  Article  Google Scholar 

  2. Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta (Hentz) und Filistata hibernalis (Hentz). Ecology 55:576–585

    Article  Google Scholar 

  3. Anderson JF (1994) Comparative energetics of comb-footed spiders (Araneae: Theridiidae). Comp Biochem Physiol 109A(1):181–189

    Article  Google Scholar 

  4. Anderson JF (1996) Metabolic rates of resting salticid and thomisid spiders. J Arachnol 24:129–134

    Google Scholar 

  5. Anderson JF, Prestwich KN (1975) The fluid pressure pumps of spiders (Chelicerata, Araneae). Z Morph Tiere 81:257–277

    Article  Google Scholar 

  6. Anderson JF, Prestwich KN (1982) Respiratory gas exchange in spiders. Physiol Zool 55(1):72–90

    Article  Google Scholar 

  7. Anderson JF, Prestwich KN (1985) The physiology of exercise at and above maximal aerobic capacity in a theraphosid (tarantula) spider Brachypelma smithi. J Comp Physiol B 155:529–539

    Article  Google Scholar 

  8. Angersbach D (1978) Oxygen transport in the blood of the tarantula Eurypelma californicum: pO2 and pH during rest, activity and recovery. J comp Physiol 123:113–125

    Article  Google Scholar 

  9. Ballweber P, Markl J, Burmester T (2002) Complete hemocyanin subunit sequences of the hunting spider Cupiennius salei—recent hemocyanin remodeling in entelegyne spiders. J Biol Chem 277:14451–14457

    CAS  PubMed  Article  Google Scholar 

  10. Berner RA, Vandenbrooks JM, Ward P (2007) Oyxgen and evolution. Science 316:557–558

    CAS  PubMed  Article  Google Scholar 

  11. Bertkau P (1876) Über die Respiationsorgane der Araneen. Archiv für Naturgeschichte 38:208–233

    Google Scholar 

  12. Blest AD (1976) The tracheal arrangement and the classification of linyphiid spiders. J Zool Lond 180:185–194

    Article  Google Scholar 

  13. Braun F (1931) Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica Cl. Zoolog Jahrb Syst 62:175–262

    Google Scholar 

  14. Bromhall C (1987a) Spider heart-rates and locomotion. J Comp Physiol B 157:451–460

    Article  Google Scholar 

  15. Bromhall C (1987b) Spider tracheal systems. Tissue Cell 19(6):793–807

    CAS  PubMed  Article  Google Scholar 

  16. Burmester T (2013) Evolution and adaptation of hemocyanin within spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 3–14

    Google Scholar 

  17. Cady AB, Delaney KJ, Uetz GW (2011) Contrasting energetic costs of courtship signaling in two wolf spiders having divergent courtship behaviors. J Arachnol 39:161–165

    Article  Google Scholar 

  18. Canals M, Salazar MJ, Duran C, Figueroa D, Veloso C (2007) Respiratory refinements in the mygalomorph spider Grammostola rosea walckenaer 1837 (Araneae, Theraphosidae). J Arachnol 35:481–486

    Article  Google Scholar 

  19. Canals M, Figueroa D, Alfaro C, Kawamoto T, Torres-Contreras H, Sabat P, Veloso C (2011) Effects of diet and water supply on energy intake and water loss in a mygalomorph spider in a fluctuating environment of the central Andes. J Insect Physiol 57:1489–1494. doi:10.1016/j.jinsphys.2011.07.016

    CAS  PubMed  Article  Google Scholar 

  20. Canals M, Veloso C, Moreno L, Solis R (2015a) Low metabolic rates in primitive hunters and weaver spiders. Physiol Entomol 40:232–238. doi:10.1111/phen.12108

    Article  Google Scholar 

  21. Canals M, Veloso C, Solis R (2015b) Adaptation of the spiders to the environment: the case of some Chilean species. Front Physiol. doi:10.3389/fphys.2015.00220

    PubMed  PubMed Central  Google Scholar 

  22. Carrel JE (1987) Heart rate and physiological ecology. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 95–110

    Google Scholar 

  23. Carrel JE, Heathcote RD (1976) Heart rate in spiders: influence of body size and foraging strategies. Science 193:148–150

    CAS  PubMed  Article  Google Scholar 

  24. Crome W (1952/53) Die Respirations- und Circulationsorgane der Argyroneta aquatica Cl. (Araneaea). Wiss Zeitschr Humboldt Universit”t Berlin 3/4:53–83

  25. Culik BM, McQueen DJ (1985) Monitoring respiration and activity in the spider Geolycosa domifex (Hancock) using time-lapse televison and CO2-analysis. Can J Zool 63:843–846

    Article  Google Scholar 

  26. Edwards GA (1946) The influence of temperature upon the oxygen consumption of several arthropods. J Cell Comp Physiol 27:53–64

    CAS  Article  Google Scholar 

  27. Ellis CH (1944) The mechanism of extension in the legs of spiders. Biol Bull 86:41–50

    Article  Google Scholar 

  28. Figueroa DP, Sabat P, Torres-Contreras H, Veloso C, Canals M (2010) Participation of book lungs in evaporative water loss in Paraphysa parvula, a migalomorph spider from Chilean Andes. J Insect Physiol 56:731–735. doi:10.1016/j.jinsphys.2010.01.001

    CAS  PubMed  Article  Google Scholar 

  29. Fincke T, Paul R (1989) Book lung function in arachnids III. The function and control of the spiracles. J Comp Physiol B 159:433–441

    Article  Google Scholar 

  30. Foelix RF (1992) Biologie der Spinnen, Second edn. Georg Thieme Verlag, New York

    Google Scholar 

  31. Ford MJ (1977a) Energy costs of the predation strategy of the web-spinning spider Lethyphantes zimmermanni Bertkau (Linyphiidae). Oecologica 28:341–349

    Article  Google Scholar 

  32. Ford MJ (1977b) Metabolic costs of the predation strategy of the spider Pardosa amentata (Clerck) (Lycosidae). Oecologica 28:333–340

    Article  Google Scholar 

  33. Forster RR (1980) Evolution of the tarsal organ, the respiratory system and the female genitalia in spiders. Int Congr Arachnol 8:269–284

    Google Scholar 

  34. Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rates in spiders. Ecology 61(5):1255–1259

    Article  Google Scholar 

  35. Haller B (1912) Über die Atmungsorgane der Arachnoiden. Ein Beitrag zur Stammesgeschichte dieser Tiere Arch f Mikrosk Anat 79:1–58

    Article  Google Scholar 

  36. Hemmingsen AM (1960) Energy metabolism as related to body size and respiratory surfaces, and its evolution. Rep Steno Mem Hosp 9:1–110

    Google Scholar 

  37. Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915

    PubMed  PubMed Central  Google Scholar 

  38. Humphreys WF (1977) Respiration studies on Geolycosa godeffroyi (Aranea: Lycosidae) and their relationship to field estimates of metabolic heat loss. Comp Biochem Physiol 57A:255–263

    Article  Google Scholar 

  39. Jensen K, Mayntz D, Wang T, Simpson SJ, Overgaard J (2010) Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J Insect Physiol 56:1095–1100. doi:10.1016/j.jinsphys.2010.03.001

    CAS  PubMed  Article  Google Scholar 

  40. Kästner A (1929) Bau und Funktion der Fächertracheen einiger Spinnen. Z f Morphol d Tiere 13:463–558

    Article  Google Scholar 

  41. Kasumovic MM, Seebacher F (2013) The active metabolic rate predicts a male spider’s proximity to females and expected fitness. Biol Lett 9:1–4. doi:10.1098/rsbl.2012.1164

    Article  Google Scholar 

  42. Kawamoto TH, Machado FDA, Kaneto GE, Japyassu HF (2011) Resting metabolic rates of two orbweb spiders: a first approach to evolutionary success of ecribellate spiders. J Insect Physiol 57:427–432. doi:10.1016/j.jinsphys.2011.01.001

    CAS  PubMed  Article  Google Scholar 

  43. Kotiaho J (1998) Sexual differences in metabolic rates of spiders. J Arachnol 26:401–404

    Google Scholar 

  44. Lamy E (1902) Les trachées des araignées. Ann Sci Natur Zool 15(8):149–280

    Google Scholar 

  45. Levi HW (1967) Adaptations of respiratory systems of spiders. Evolution 21:571–583

    Article  Google Scholar 

  46. Levi HW (1976) On the evolution of tracheae in Arachnids. Bull Br Arachnol Soc 3(7):187–188

    Google Scholar 

  47. Linzen B, Gallowitz P (1975) Enzyme activity patterns in muscles of the lycosid spider Cupiennius salei. J Comp Physiol 96:101–109

    CAS  Article  Google Scholar 

  48. Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:505–514

    Google Scholar 

  49. Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from Arthropods. Biol Bull 171:90–115

    CAS  Article  Google Scholar 

  50. Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. Adv Comp Environ Physiol 13:325–376

    CAS  Article  Google Scholar 

  51. Markl J, Stöcker W, Runzler R, Precht E (1986) Immunological correspondence between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 281–299

    Google Scholar 

  52. McQueen DJ (1980) Active respiration rates for the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 58:1066–1074

    CAS  PubMed  Article  Google Scholar 

  53. McQueen DJ, Culik B (1981) Field and laboratory activity patterns in the burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 59:1263–1271

    Article  Google Scholar 

  54. McQueen DJ, Jensen IM, Dyer BS (1979) Resting and diel respiration rates for burrowing wolf spider Geolycosa domifex (Hancock). Can J Zool 57:1922–1933

    Article  Google Scholar 

  55. Millidge AF (1986) A revision of the tracheal structures of the Linyphiidae (Araneae). Bull Br Arachnol Soc 7(2):57–61

    Google Scholar 

  56. Miyashita K (1969) Effects of locomotory activity, temperature and hunger on the respiratory rate of Lycosa t-insignita Boes et. Str. (Araneae: Lycosidae). Appl Ent Zool 4:105–113

    Google Scholar 

  57. Moore SJ (1976) Some spider organs as seen by the scanning electron microscope, with special reference to the book-lung. Bull Br Arachnol Soc 3(7):177–187

    Google Scholar 

  58. Nakamura K (1987) Hunger and starvation. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 287–295

    Google Scholar 

  59. Nespolo RF, Correa L, Perez-Apablaza CX, Cortes P, Bartheld JL (2011) Energy metabolism and the postprandial response of the Chilean tarantulas, Euathlus truculentus (Araneae: Theraphosidae). Comp Biochem Physiol A-Mol Integr Physiol 159:379–382. doi:10.1016/j.cbpa.2011.04.003

    PubMed  Article  CAS  Google Scholar 

  60. Okuyama T (2015) Metabolic responses to predation risk in a jumping spider. J Zool 297:9–14. doi:10.1111/jzo.12251

    Article  Google Scholar 

  61. Opell BD (1979) Revision of the genera and tropical American species of the spider family Uloboridae. Bull Mus Comp Zool 148(10):443–549

    Google Scholar 

  62. Opell BD (1987) The influence of web monitoring tactics on the tracheal systems of spiders in the family Uloboridae (Arachnida, Araneida). Zoomorphology 107:255–259

    Article  Google Scholar 

  63. Opell BD (1989) Centers of mass and weight distribution in spiders of the family Uloboridae. J Morphol 202:351–359

    Article  Google Scholar 

  64. Opell BD (1990) The relationships of book lung and tracheal systems in the spider family Uloboridae. J Morphol 206:211–216

    Article  Google Scholar 

  65. Opell BD (1998) The respiratory complementary of spider book lung and tracheal systems. J Morphol 236:57–64

    Article  Google Scholar 

  66. Opell BD, Konur DC (1992) Influence of web-monitoring tactics on the density of mitochondria in leg muscles of the spider family Uloboridae. J Morphol 213:341–347

    Article  Google Scholar 

  67. Paul R (1986) Gas exchange and gas transport in the tarantula Eurypelma californicum—an overview. In: Linzen B (ed) Invertebrate oxygen carriers. Springer, Berlin, pp 321–326

    Google Scholar 

  68. Paul RJ (1991) Oxygen transport from book lungs to tissues—environmental physiology and metabolism in arachnids. Verh Dt Zool Ges 84:9–14

    Google Scholar 

  69. Paul RJ (1992) Gas exchange, circulation, and energy metabolism in arachnids. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological adaptations in vertebrates. Marcel Dekker, New York, pp 169–197

    Google Scholar 

  70. Paul R, Fincke T (1989) Book lung function in arachnids II. Carbon dioxide and its relations to respiratory surface, water loss and heart frequency. J Comp Physiol 159:419–432

    Article  Google Scholar 

  71. Paul R, Fincke T, Linzen B (1987) Respiration in the tarantula Eurypelma californicum: evidence for diffusion lungs. J Comp Physiol B 157:209–217

    Article  Google Scholar 

  72. Paul R, Fincke T, Linzen B (1989a) Book lung function in arachnids. I. Oxygen uptake and respiratory quotient during rest, activity and recovery—relations to gas transport in the haemolymph. J Comp Physiol B 159:409–418

    Article  Google Scholar 

  73. Paul R, Tiling K, Focke P, Linzen B (1989b) Heart and circulatory functions in a spider (Eurypelma californicum): the effects of hydraulic force generation. J Comp Physiol B 158:673–687

    Article  Google Scholar 

  74. Paul RJ, Bergner B, Pfeffer-Seidl A, Decker H, Efinger R, Storz H (1994a) Gas transport in the haemolymph of Arachnids I. Oxygen transport and the physiological role of haemocyanins. J exp Biol 188:25–46

    CAS  PubMed  Google Scholar 

  75. Paul RJ, Bihlmayer S, Colmorgen M, Zahler S (1994b) The open circulatory system of spiders (Eurypelma californicum, Pholcus phalangioides): a survey of functional morphology and physiology. Physiol Zool 67(6):1360–1382

    Article  Google Scholar 

  76. Pedersen O, Colmer TD (2012) Physical gills prevent drowning of many wetland insects, spiders and plants. J Exp Biol 215:705–709. doi:10.1242/jeb.065128

    CAS  PubMed  Article  Google Scholar 

  77. Peters HM (1987) Fine structure and function of capture threads. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 187–202

    Google Scholar 

  78. Prestwich KN (1983a) Anaerobic metabolism in spiders. Physiol Zool 56(1):112–121

    CAS  Article  Google Scholar 

  79. Prestwich KN (1983b) The roles of aerobic and anaerobic metabolism in active spiders. Physiol Zool 56(1):122–132

    Article  Google Scholar 

  80. Prestwich KN (1988a) The constraints on maximal activity in spiders I. Evidence against the fluid insufficiency hypothesis. J Comp Physiol 158:437–447

    Article  Google Scholar 

  81. Prestwich KN (1988b) The constraints on maximal activity in spiders. II. Limitations imposed by phosphagen depletion and anaerobic metabolism. J Comp Physiol B 158:449–456

    CAS  Article  Google Scholar 

  82. Purcell F (1895) Note on the development of the lungs, entapophyses, tracheae and genital ducts in spiders. Zool Anz 486:1–5

    Google Scholar 

  83. Purcell WF (1909) Development and origin of the respiratory organs in Araneae. Quart J Microsc Sci 54(1):1–110

    Google Scholar 

  84. Purcell WF (1910) The phylogeny of tracheae in Araneae. Quart J Microsc Sci 54(4):519–563

    Google Scholar 

  85. Ramirez MJ (2000) Respiratory system morphology and the phylogeny of haplogyne spiders (Araneae, Araneomorphae). J Arachnol 28:149–157

    Article  Google Scholar 

  86. Rehm P, Pick C, Borner J, Markl J, Burmester T (2012) The diversity and evolution of chelicerate hemocyanins. BMC Evolut Biol 12:19. doi:10.1186/1471-2148/12/19

    CAS  Article  Google Scholar 

  87. Reisinger PWM, Focke P, Linzen B (1990) Lung morphology of the tarantula, Eurypelma californicum, Ausserer, 1871 (Araneae: Theraphosidae). Bull Br Arachnol Soc 8:165–170

    Google Scholar 

  88. Reisinger PWM, Tutter I, Welsch U (1991) Fine structure of the gills of the horseshoe crabs Limulus polyphemus and tachypleus tridentatus and of the book lungs of the spider Eurypelma californicum. Zool Jb Anat 121:331–357

    Google Scholar 

  89. Schmalhofer VR (2011) Impacts of temperature, hunger and reproductive condition on metabolic rates of flower-dwelling crab spiders (Araneae: Thomisidae). J Arachnol 39:41–52

    Article  Google Scholar 

  90. Schmitz A (2004) Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). J Comp Physiol B 174:519–526

    CAS  PubMed  Google Scholar 

  91. Schmitz A (2005) Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). J Exp Biol 208:1401–1411

    PubMed  Article  Google Scholar 

  92. Schmitz A (2013) Tracheae in spiders: respiratory organs for special functions. In: Nentwig W (ed) Spider ecophysiology. Springer, New York, pp 29–39

    Google Scholar 

  93. Schmitz A (2015) Functional morphology of the respiratory organs in the cellar spider Pholcus phalangioides (Arachnida, Araneae, Pholcidae). J Comp Physiol B 185:637–646

    CAS  PubMed  Article  Google Scholar 

  94. Schmitz A, Paul RJ (2003) Probing of hemocyanin function in araneomorph spiders. XIIIth international conference Inv Diox Bind Prot Mainz, vol 96

  95. Schmitz A, Perry SF (2000) Respiratory system of arachnids I: Morphology of the respiratory system of Salticus scenicus and Euophrys lanigera (Arachnida, Araneae, Salticidae). Arthropod Struct Dev 29:3–12

    CAS  PubMed  Article  Google Scholar 

  96. Schmitz A, Perry SF (2001) Bimodal breathing in jumping spiders: morphometric partitioning of lungs and tracheae in Salticus scenicus (Arachnida, Araneae, Salticidae). J Exp Biol 204:4321–4334

    CAS  PubMed  Google Scholar 

  97. Schmitz A, Perry SF (2002) Respiratory organs in wolf spiders: morphometric analysis of lungs and tracheae in Pardosa lugubris (L.) (Arachnida, Araneae, Lycosidae). Arthropod Struct Dev 31:217–230

    PubMed  Article  Google Scholar 

  98. Seymour RS, Hetz SK (2011) The diving bell and the spider: the physical gill of Argyroneta aquatica. J Exp Biol 214:2175–2181. doi:10.1242/jeb.056093

    PubMed  Article  Google Scholar 

  99. Seymour RS, Vinegar A (1973) Thermal relations, water loss and oxygen consumption of a North American tarantula. Comp Biochem Physiol 44A:83–96

    Article  Google Scholar 

  100. Shillington C (2005) Inter-sexual differences in resting metabolic rates in the Texas tarantula, Aphonopelma anax. Comp Biochem Physiol A-Mol Integr Physiol 142:439–445

    PubMed  Article  CAS  Google Scholar 

  101. Shillington C, Peterson CC (2002) Energy metabolism of male and female tarantulas (Aphonopelma anax) during locomotion. J Exp Biol 205:2909–2914

    PubMed  Google Scholar 

  102. Simmons OL (1894) Development of the lungs of spiders. Am J Sci Art 48:119–129

    Article  Google Scholar 

  103. Stoltz JA, Andrade MCB, Kasumovic MM (2012) Developmental plasticity in metabolic rates reinforces morphological plasticity in response to social cues of sexual selection. J Insect Physiol 58:985–990. doi:10.1016/j.jinsphys.2012.05.002

    CAS  PubMed  Article  Google Scholar 

  104. Strazny F, Perry SF (1984) Morphometric diffusing capacity and functional anatomy of the book lungs in the spider Tegenaria spp. (Agelenidae). J Morphol 182:339–354

    Article  Google Scholar 

  105. Strazny F, Perry SF (1987) Respiratory system: structure and function. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 78–94

    Google Scholar 

  106. Tanaka K, Itô Y (1982) Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation Res. Popul Ecol 24:360–374

    Article  Google Scholar 

  107. Tanaka K, Ito Y, Saito T (1985) Reduced respiratory quotient by starvation in a wolf spider, Pardosa astrigera (L. Koch). Comp Biochem Physiol A-Mol Integr Physiol 80:415–418

    Article  Google Scholar 

  108. van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    PubMed  Article  Google Scholar 

  109. Venner S, Bel-Venner M-C, Pasquet A, Leborgne R (2003) Body-mass-dependent cost of web-building behavior in an orb weaving spider, Zygiella x-notata. Naturwissenschaften 90:269–272

    CAS  PubMed  Article  Google Scholar 

  110. Walker SE, Irwin JT (2006) Sexual dimorphism in the metabolic rate of two species of wolf spider (Araneae, Lycosidae). J Arachnol 34:368–373

    Article  Google Scholar 

  111. Watson PJ, Lighton JRB (1994) Sexual selection and the energetics of copulatory courtship in the Sierra dome spider, Linyphia litigiosa. Anim Behav 48:615–626

    Article  Google Scholar 

  112. Wirkner CS, Huckstorf K (2013) The circulatory system of spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 15–27

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anke Schmitz.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schmitz, A. Respiration in spiders (Araneae). J Comp Physiol B 186, 403–415 (2016). https://doi.org/10.1007/s00360-016-0962-8

Download citation

Keywords

  • Metabolic rate
  • Resting rate
  • Factorial scope
  • Lungs
  • Tracheae