Skip to main content
Log in

Peroxiredoxin 6 from the Antarctic emerald rockcod: molecular characterization of its response to warming

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In the present study, we describe the purification and molecular characterization of two peroxiredoxins (Prdxs), referred to as Prdx6A and Prdx6B, from Trematomus bernacchii, a teleost widely distributed in many areas of Antarctica, that plays a pivotal role in the Antarctic food chain. The two putative amino acid sequences were compared with Prdx6 orthologs from other fish, highlighting a high percentage of identity and similarity with the respective variant, in particular for the residues that are essential for the characteristic peroxidase and phospholipase activities of these enzymes. Phylogenetic analyses suggest the appearance of the two prdx6 genes through a duplication event before the speciation that led to the differentiation of fish families and that the evolution of the two gene variants seems to proceed together with the evolution of fish orders and families. The temporal expression of Prdx6 mRNA in response to short-term thermal stress showed a general upregulation of prdx6b and inhibition of prdx6a, suggesting that the latter is the variant most affected by temperature increase. The variations of mRNA accumulation are more conspicuous in heart than the liver, probably related to behavioral changes of the specimens in response to elevated temperature. These data, together with the peculiar differences between the molecular structures of the two Prdx6s in T. bernacchii as well as in the tropical species Stegastes partitus, suggest an adaptation that allowed these poikilothermic aquatic vertebrates to colonize very different environments, characterized by different temperature ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol 138A:405–415. doi:10.1016/j.cbpb.2004.05.013

    Article  CAS  Google Scholar 

  • Acworth IN, McCabe DR, Maher T (1997) The analysis of free radicals, their reaction products and antioxidants. In: Baskin SI, Salem H (eds) Oxidants, antioxidants and free radicals. Taylor and Francis, Washington, DC, pp 23–77

    Google Scholar 

  • Albergoni V, Cassini A, Coppellotti O, Favero M, Favero N, Irato P, Piccinni E, Santovito G (2000) Physiological responses to heavy metal and adaptation to increase oxygen partial pressure in Antarctic fish and protozoa. Ital J Zool 67(S1):1–11. doi:10.1080/11250000009356349

    Article  CAS  Google Scholar 

  • Ansaldo M, Luquet CM, Evelson PA, Polo JM, Llesuy S (2000) Antioxidant levels from different Antarctic fish caught around South Georgia Island and Shag Rocks. Polar Biol 23(3):160–165. doi:10.1007/s003000050022

    Article  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041. doi:10.1073/pnas.181342398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42 (Web Server issue):W252–W258. doi:10.1093/nar/gku340

    Article  Google Scholar 

  • Clarke A, Doherty N, De Vries AL, Eastman JT (1984) Lipid content and composition of three species of Antarctic fish in relation to buoyancy. Polar Biol 3:77–83. doi:10.1007/BF00258151

    Article  CAS  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165. doi:10.1093/bioinformatics/btr088

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772. doi:10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • David E, Tanguy A, Moraga D (2007) Peroxiredoxin 6 gene: a new physiological and genetic indicator of multiple environmental stress response in Pacific oyster Crassostrea gigas. Aquat Toxicol 84(3):389–398. doi:10.1016/j.aquatox.2007.06.017

    Article  CAS  PubMed  Google Scholar 

  • De Zoysa M, Ryu JH, Chung HC, Kim CH, Nikapitiya C, Oh C, Kim H, Revathy KS, Whang I, Lee J (2012) Molecular characterization, immune responses and DNA protection activity of rock bream (Oplegnathus fasciatus), peroxiredoxin 6 (Prx6). Fish Shellfish Immunol 33(1):28–35. doi:10.1016/j.fsi.2012.03.029

    Article  PubMed  Google Scholar 

  • Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35 (Web Server issue):W522–W525. doi:10.1093/nar/gkm276

    Article  Google Scholar 

  • Doron-Faigenboim A, Pupko T (2007) A combined empirical and mechanistic codon model. Mol Biol Evol 24(2):388–397. doi:10.1093/molbev/msl175

    Article  CAS  PubMed  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic Press, New York

    Google Scholar 

  • Eastman JT, De Vries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo sound, Antarctica. Copeia 2:385–393. doi:10.2307/1444619

    Article  Google Scholar 

  • Enzor LA, Place SP (2014) Is warmer better? Decreased oxidative damage in notothenioid fish after long-term acclimation to multiple stressors. J Exp Biol 217(18):3301–3310. doi:10.1242/jeb.108431

    Article  PubMed  Google Scholar 

  • Enzor LA, Zippay ML, Place SP (2013) High latitude fish in a high CO2 world: synergistic effects of elevated temperature and carbon dioxide on the metabolic rates of Antarctic notothenioids. Comp Biochem Physiol A 164(1):154–161. doi:10.1016/j.cbpa.2012.07.016

    Article  CAS  Google Scholar 

  • Ferro D, Bakiu R, De Pittà C, Boldrin F, Cattalini F, Pucciarelli S, Miceli C, Santovito G (2015) Cu, Zn superoxide dismutases from Tetrahymena thermophila: molecular evolution and gene expression of the first line of antioxidant defenses. Protist 166(1):131–145. doi:10.1016/j.protis.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  • Fisher AB (2011) Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. Antioxid Redox Signal 15(3):831–844. doi:10.1089/ars.2010.3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gekko K, Kamiyama T, Ohmae E, Katayanagi K (2000) Single amino acid substitutions in flexible loops can induce large compressibility changes in dihydrofolate reductase. J Biochem 128(1):21–27. doi:10.1093/oxfordjournals.jbchem.a022726

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins structures, mechanisms and functions. FEBS J 276(9):2469–2477. doi:10.1111/j.1742-4658.2009.06985.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, vol 3. Oxford Science Publications, Oxford

    Google Scholar 

  • Hardy AC, Gunther ER (1935) The plankton of the South Georgia whaling grounds and adjacent waters 1926–1927. Cambridge University Press, Cambridge

    Google Scholar 

  • Huang F, Nau WM (2003) A conformational flexibility scale for amino acids in peptides. Angew Chem Int Ed 42(20):2269–2272. doi:10.1002/anie.200250684

    Article  CAS  Google Scholar 

  • Huth TJ, Place SP (2013) De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii. BMC Genomics 14:805. doi:10.1186/1471-2164-14-805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston II, Calvo J, Guderley YH (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201(1):1–12

    CAS  PubMed  Google Scholar 

  • Knoops B, Loumaye E, Van Der Eecken V (2007) Evolution of the peroxiredoxins (Taxonomy/Homology/Characterization). In: Flohé L, Harris JR Peroxiredoxin systems. Subcell Biochem 44:27–40. doi:10.1007/978-1-4020-6051-9_2

  • Knoops B, Goemaere J, Van der Eecken V, Declercq JP (2011) Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 15(3):817–829. doi:10.1089/ars.2010.3584

    Article  CAS  PubMed  Google Scholar 

  • König J, Galliardt H, Jütte P, Schäper S, Dittmann L, Dietz KJ (2013) The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone. J Exp Bot 64(11):3483–3497. doi:10.1093/jxb/ert184

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Dobbs GH 3rd, Devries AL (1974) Oxygen consumption and lipid content in red and white muscles of Antarctic fishes. J Exp Zool 189(3):379–386. doi:10.1002/jez.1401890310

    Article  CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958. doi:10.1002/prot.22711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu NN, Liu ZS, Lu SY, Hu P, Li YS, Feng XL, Zhang SY, Wang N, Meng QF, Yang YJ, Tang F, Xu YM, Zhang WH, Guo X, Chen XF, Zhou Y, Ren HL (2015) Full-length cDNA cloning, molecular characterization and differential expression analysis of peroxiredoxin6 from Ovis aries. Vet Immunol Immunopathol 164(3–4):208–219. doi:10.1016/j.vetimm.2015.01.006

    Article  CAS  PubMed  Google Scholar 

  • Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with πGST. Proc Natl Acad Sci USA 101(11):3780–3785. doi:10.1073/pnas.0400181101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manevich Y, Reddy KS, Shuvaeva T, Feinstein SI, Fisher AB (2007) Structure and phospholipase function of peroxiredoxin 6: identification of the catalytic triad and its role in phospholipid substrate binding. J Lipid Res 48(10):2306–2318. doi:10.1194/jlr.M700299-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Nikapitiya C, De Zoysa M, Whang I, Kim CG, Lee YH, Kim SJ, Lee J (2009) Molecular cloning, characterization and expression analysis of peroxiredoxin 6 from disk abalone Haliotis discus discus and the antioxidant activity of its recombinant protein. Fish Shellfish Immunol 27(2):239–249. doi:10.1016/j.fsi.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  • Park H, Ahn IY, Kim H, Cheon J, Kim M (2008) Analysis of ESTs and expression of two peroxiredoxins in the thermally stressed Antarctic bivalve Laternula elliptica. Fish Shellfish Immunol 25(5):550–559. doi:10.1016/j.fsi.2008.07.017

    Article  CAS  PubMed  Google Scholar 

  • Peck LS (2005) Prospects for surviving climate change in Antarctic aquatic species. Front Zool 2:9. doi:10.1186/1742-9994-2-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia and increases in CO2 on marine animals: from earth history to global change. J Geophys Res 110:C09S10. doi:10.1029/2004JC002561

  • Rahaman H, Zhou S, Dodia C, Feinstein SI, Huang S, Speicher D, Fisher AB (2012) Increased phospholipase A2 activity with phosphorylation of peroxiredoxin 6 requires a conformational change in the protein. Biochemistry 51(27):5521–5530. doi:10.1021/bi300380h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall LM, Ferrer-Sueta G, Denicola A (2013) Peroxiredoxins as preferential targets in H2O2-induced signaling. Methods Enzymol 527:41–63. doi:10.1016/B978-0-12-405882-8.00003-9

    Article  CAS  PubMed  Google Scholar 

  • Ren L, Sun Y, Wang R, Xu T (2014) Gene structure, immune response and evolution: comparative analysis of three 2-Cys peroxiredoxin members of miiuy croaker, Miichthys miiuy. Fish Shellfish Immunol 36(2):409–416. doi:10.1016/j.fsi.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid M, Buc Calderon P (1995) Free radicals and oxidation phenomena in biological systems. Dekker, New York

    Google Scholar 

  • Römisch K, Matheson T (2003) Cell biology in the Antarctic: studying life in the freezer. Nat Cell Biol 5(1):3–6. doi:10.1038/ncb0103-3

    Article  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. doi:10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Santovito G, Irato P, Piccinni E, Albergoni V (2000) Relationship between metallothionein and metal contents in red-blooded and white-blooded Antarctic teleosts. Polar Biol 23(6):383–391. doi:10.1007/s003000050459

    Article  Google Scholar 

  • Santovito G, Cassini A, Piccinni E (2006) Cu, Zn SOD from Trematomus bernacchii: molecular properties and evolution. Comp Biochem Physiol C 143(4):444–454. doi:10.1016/j.cbpc.2006.04.007

    Google Scholar 

  • Santovito G, Marino S, Sattin G, Cappellini R, Bubacco L, Beltramini M (2012a) Cloning and characterization of cytoplasmic carbonic anhydrase from gills of four Antarctic fish: insights into the evolution of fish carbonic anhydrase and cold adaptation. Polar Biol 35:1587–1600. doi:10.1007/s00300-012-1200-9

    Article  Google Scholar 

  • Santovito G, Piccinni E, Boldrin F, Irato P (2012b) Comparative study on metal homeostasis and detoxification in two Antarctic teleosts. Comp Biochem Physiol C 155(4):580–586. doi:10.1016/j.cbpc.2012.01.008

    CAS  Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46(5):659–667. doi:10.1016/0092-8674(86)90341-7

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433. doi:10.1146/annurev.biochem.75.103004.142723

    Article  CAS  PubMed  Google Scholar 

  • Smeets A, Loumaye E, Clippe A, Rees JF, Knoops B, Declercq JP (2008) The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers. Protein Sci 17(4):700–710. doi:10.1110/ps.073399308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003a) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300(5619):650–653. doi:10.1126/science.1080405

    Article  CAS  PubMed  Google Scholar 

  • Wood ZA, Schröder E, Harris JR, Poole LB (2003b) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40. doi:10.1016/S0968-0004(02)00003-8

    Article  CAS  PubMed  Google Scholar 

  • Zheng WJ, Hu YH, Zhang M, Sun L (2010) Analysis of the expression and antioxidative property of a peroxiredoxin 6 from Scophthalmus maximus. Fish Shellfish Immunol 29(2):305–311. doi:10.1016/j.fsi.2010.04.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Italian National Program for Antarctic Research (PNRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Santovito.

Additional information

Communicated by I.D. Hume.

A.M. Tolomeo and A. Carraro contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolomeo, A.M., Carraro, A., Bakiu, R. et al. Peroxiredoxin 6 from the Antarctic emerald rockcod: molecular characterization of its response to warming. J Comp Physiol B 186, 59–71 (2016). https://doi.org/10.1007/s00360-015-0935-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0935-3

Keywords

Navigation