Skip to main content
Log in

Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Because lipids are the main fuel supporting avian endurance activity, lipid transport and oxidation capacities may increase during migration. We measured enzyme activities, mRNA expression and protein levels in pectoralis and heart for several key steps of lipid transport and catabolism pathways to investigate whether these pathways were upregulated during migration. We used yellow-rumped (Setophaga coronata) and yellow (S. petechia) warblers and warbling vireos (Vireo gilvus) as study species because they all show migration-induced increases in organismal metabolic capacities. For yellow-rumped warblers, β-hydroxyacyl CoA-dehydrogenase (HOAD) activities and fatty acid transporter mRNA and/or protein levels were higher during spring than fall in pectoralis and heart, except that fatty acid translocase (FAT/CD36) protein levels showed the opposite pattern in heart. Lipid transporter protein levels, but not mRNA expression, in pectoralis and heart of warbling vireos were higher either during spring or fall than summer, but this was not true for HOAD activities. For yellow warblers, pectoralis, but not heart, protein levels of lipid transporters were upregulated during migration relative to summer, but this pattern was not evident for mRNA expression or HOAD activity. Finally, muscle and heart citrate synthase and carnitine palmitoyl transferase activities showed little seasonal variation for any species. These data suggest that pectoralis and heart lipid transport and catabolism capacities are often, but not universally, important correlates of elevated organismal metabolic capacity during migration. In contrast, migration-induced variation in cellular metabolic intensity and mitochondrial membrane transport are apparently not common correlates of the migratory phenotype in passerines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Battley PF, Dietz MW, Piersma T, Dekinga A, Tang S, Hulsman K (2001) Is long-distance bird flight equivalent to a high-energy fast? Body composition changes in freely migrating and captive fasting great knots. Physiol Biochem Zool 74:435–449. doi:10.1086/320432

    Article  CAS  PubMed  Google Scholar 

  • Bonen A et al (2003) Plasmalemmal fatty acid transport is regulated in heart and skeletal muscle by contraction, insulin and leptin, and in obesity and diabetes. Acta Physiol Scand 178:347–356. doi:10.1046/j.1365-201X.2003.01157.x

    Article  CAS  PubMed  Google Scholar 

  • Bonen A, Chabowski A, Luiken JJ, Glatz JF (2007) Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda) 22:15–29

    CAS  Google Scholar 

  • Borgmann KL, Pearson SF, Levey DJ, Greenberg CH, Stouffer P (2004) Wintering yellow-rumped warblers (Dendroica coronata) track manipulated abundance of Myrica cerifera fruits. Auk 121:74–87

    Article  Google Scholar 

  • Burelle Y et al (2004) Regular exercise is associated with a protective metabolic phenotype in the rat heart. Am J Physiol Heart Circ Physiol 287:H1055–H1063. doi:10.1152/ajpheart.00925.2003

    Article  CAS  PubMed  Google Scholar 

  • Campbell SE, Febbraio MA (2001) Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. Am J Physiol 281:E803–E808

    CAS  Google Scholar 

  • Chabowski A, Górski J, Bonen A (2006) Regulation of fatty acid transport: from transcriptional to posttranscriptional effects. Naunyn Schmiedebergs Arch Pharmacol 373:259–263

    Article  CAS  PubMed  Google Scholar 

  • Clarke DC et al (2004) Overexpression of membrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol Genomics 17:31–37. doi:10.1152/physiolgenomics.00190.2003

    Article  CAS  PubMed  Google Scholar 

  • Corder K, Schaeffer P (2015) Summit metabolic rate exhibits phenotypic flexibility with migration, but not latitude in a neotropical migrant, Parkesia noveboracensis. J Ornithol 156:547–550. doi:10.1007/s10336-015-1157-x

    Article  Google Scholar 

  • Dawson WR, Marsh RL, Yacoe ME (1983) Metabolic adjustments of small passerine birds for migration and cold. Am J Physiol 245:755–767

    Google Scholar 

  • deGraw W, Kern M, King J (1979) Seasonal changes in the blood composition of captive and free-living white-crowned sparrows. J Comp Physiol 129:151–162. doi:10.1007/BF00798180

    Article  CAS  Google Scholar 

  • Driedzic WR, Crowe HL, Hicklin PW, Sephton DH (1993) Adaptations in pectoralis muscle, heart mass, and energy metabolism during premigratory fattening in semipalmated sandpipers (Calidris pusilla). Can J Zool 71:1602–1608. doi:10.1139/z93-226

    Article  Google Scholar 

  • Evans PR, Davidson NC, Uttley JD, Evans RD (1992) Premigratory hypertrophy of flight muscles: an ultrastructural study. Ornis Scand 23:238–243. doi:10.2307/3676644

    Article  Google Scholar 

  • Glatz JF, Luiken JJ, Bonen A (2010) Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 90:367–417. doi:10.1152/physrev.00003.2009

    Article  CAS  PubMed  Google Scholar 

  • Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat: 27–58

  • Guglielmo CG (2010) Move that fatty acid: fuel selection and transport in migratory birds and bats. Integr Comp Biol 50:336–345. doi:10.1093/icb/icq097

    Article  PubMed  Google Scholar 

  • Guglielmo CG, Haunerland NH, Williams TD (1998) Fatty acid binding protein, a major protein in the flight muscle of migrating western sandpipers. Comp Biochem Physiol B 119:549–555. doi:10.1016/S0305-0491(98)00016-9

    Article  CAS  PubMed  Google Scholar 

  • Guglielmo CG, Haunerland NH, Hochachka PW, Williams TD (2002) Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am J Physiol 282:R1405–R1413. doi:10.1152/ajpregu.00267.2001

    CAS  Google Scholar 

  • Guzmán M, Saborido A, Castro J, Molano F, Megias A (1991) Treatment with anabolic steroids increases the activity of the mitochondrial outer carnitine palmitoyltransferase in rat liver and fast-twitch muscle. Biochem Pharm 41:833–835. doi:10.1016/0006-2952(91)90088-M

    Article  PubMed  Google Scholar 

  • Hajri T, Han XX, Bonen A, Abumrad NA (2002) Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 109:1381–1389. doi:10.1172/jci14596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenni L, Jenni-Eiermann S (1998) Fuel supply and metabolic constraints in migrating birds. J Avian Biol 29:521–528. doi:10.2307/3677171

    Article  Google Scholar 

  • Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86:205–243. doi:10.1152/physrev.00023.2004

    Article  CAS  PubMed  Google Scholar 

  • King M, Zhang Y, Carter T, Johnson J, Harmon E, Swanson D (2015) Phenotypic flexibility of skeletal muscle and heart masses and expression of myostatin and tolloid-like proteinases in migrating passerine birds. J Comp Physiol B 185(3):333–342. doi:10.1007/s00360-015-0887-7

    Article  CAS  PubMed  Google Scholar 

  • Liknes ET, Swanson DL (2011) Phenotypic flexibility in passerine birds: seasonal variation of aerobic enzyme activities in skeletal muscle. J Therm Biol 36:430–436. doi:10.1016/j.jtherbio.2011.07.011

    Article  Google Scholar 

  • Liknes ET, Scott SM, Swanson DL (2002) Seasonal acclimatization in the american goldfinch revisited: to what extent do metabolic rates vary seasonally? The Condor 104:548–557. doi:10.2307/1370735

    Article  Google Scholar 

  • Liknes ET, Guglielmo CG, Swanson DL (2014) Phenotypic flexibility in passerine birds: seasonal variation in fuel storage, mobilization and transport. Comp Biochem Physiol B 174:1–10. doi:10.1016/j.cbpa.2014.03.017

    Article  CAS  Google Scholar 

  • Lindström Å (1997) Basal metabolic rates of migrating waders in the Eurasian arctic. J Avian Biol 28:87–92. doi:10.2307/3677098

    Article  Google Scholar 

  • Liu M, Swanson DL (2014) Physiological evidence that anthropogenic woodlots can substitute for native riparian woodlands as stopover habitat for migrant birds. Physiol Biochem Zool 87:183–195. doi:10.1086/671746

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔct method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Luiken JFP, Coort SM, Koonen DY, van der Horst D, Bonen A, Zorzano A, Glatz JC (2004) Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflügers Archiv 448:1–15. doi:10.1007/s00424-003-1199-4

    Article  CAS  PubMed  Google Scholar 

  • Lundgren BO (1988) Catabolic enzyme activities in the pectoralis muscle of migratory and non-migratory goldcrests, great tits, and yellowhammers. Ornis Scand 19:190–194. doi:10.2307/3676557

    Article  Google Scholar 

  • Lundgren BO, Kiessling K-H (1985) Seasonal variation in catabolic enzyme activities in breast muscle of some migratory birds. Oecologia 66:468–471. doi:10.2307/4217656

    Article  Google Scholar 

  • Lundgren BO, Kiessling K-H (1986) Catabolic enzyme activities in the pectoralis muscle of premigratory and migratory juvenile reed warblers Acrocephalus scirpaceus (Herm.). Oecologia 68:529–532. doi:10.2307/4217878

    Article  Google Scholar 

  • Marsh RL (1981) Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird (Dumetella carolinensis). J Comp Physiol B 141:417–423. doi:10.1007/BF01101461

    Article  CAS  Google Scholar 

  • Marsh RL, Dawson WR (1982) Substrate metabolism in seasonally acclimatized American goldfinches. Am J Physiol 242:R563–R569

    CAS  PubMed  Google Scholar 

  • McFarlan JT, Bonen A, Guglielmo CG (2009) Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J Exp Biol 212:2934–2940. doi:10.1242/jeb.031682

    Article  CAS  PubMed  Google Scholar 

  • McWilliams SR, Guglielmo C, Pierce B, Klaassen M (2004) Flying, fasting, and feeding in birds during migration: a nutritional and physiological ecology perspective. J Avian Biol 35:377–393. doi:10.1111/j.0908-8857.2004.03378.x

    Article  Google Scholar 

  • Pelsers MM, Butler PJ, Bishop CM, Glatz JF (1999) Fatty acid binding protein in heart and skeletal muscles of the migratory barnacle goose throughout development. Am J Physiol 276:R637–R643

    CAS  PubMed  Google Scholar 

  • Piersma T (1998) Phenotypic flexibility during migration: optimization of organ size contingent on the risks and rewards of fueling and flight? J Avian Biol 29:511–520. doi:10.2307/3677170

    Article  Google Scholar 

  • Piersma T, Cadée N, Daan S (1995) Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the knot (Calidris canutus). J Comp Physiol B 165:37–45. doi:10.1007/BF00264684

    Article  Google Scholar 

  • Piersma T, Everaarts JM, Jukema J (1996) Build-up of red blood cells in refuelling bar-tailed godwits in relation to individual migratory quality. Condor 98:363–370. doi:10.2307/1369154

    Article  Google Scholar 

  • Place AR, Stiles EW (1992) Living off the wax of the land: bayberries and yellow-rumped warblers. Auk: 334–345

  • Pownall HJ, Hamilton JA (2003) Energy translocation across cell membranes and membrane models. Acta Physiol Scand 178:357–365. doi:10.1046/j.1365-201X.2003.01154.x

    Article  CAS  PubMed  Google Scholar 

  • Pravenec M et al (2003) Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol Res 52:681–688

    CAS  PubMed  Google Scholar 

  • Price ER, McFarlan JT, Guglielmo CG (2010) Preparing for migration? The effects of photoperiod and exercise on muscle oxidative enzymes, lipid transporters, and phospholipids in white-crowned sparrows. Physiol Biochem Zool 83:252–262. doi:10.1086/605394

    Article  CAS  PubMed  Google Scholar 

  • Price ER, Staples JF, Milligan CL, Guglielmo CG (2011) Carnitine palmitoyl transferase activity and whole muscle oxidation rates vary with fatty acid substrate in avian flight muscles. J Comp Physiol B 181:565–573. doi:10.1007/s00360-010-0542-2

    CAS  PubMed  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi:10.1016/S0304-3940(02)01423-4

    Article  CAS  PubMed  Google Scholar 

  • Ramenofsky M (1990) Fat storage and fat metabolism in relation to migration. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 214–231. doi:10.1007/978-3-642-74542-3_15

    Chapter  Google Scholar 

  • Seewagen CL, Guglielmo CG, Morbey YE (2013) Stopover refueling rate underlies protandry and seasonal variation in migration timing of songbirds. Behav Ecol 24:634–642. doi:10.1093/beheco/ars225

    Article  Google Scholar 

  • Smith JP, Achua JK, Summers TR, Ronan PJ, Summers CH (2014) Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress. Front Behav Neurosci 8:121. doi:10.3389/fnbeh.2014.00121

    PubMed Central  PubMed  Google Scholar 

  • Srivastava S, Rani S, Kumar V (2014) Photoperiodic induction of pre-migratory phenotype in a migratory songbird: identification of metabolic proteins in flight muscles. J Comp Physiol B 184:741–751. doi:10.1007/s00360-014-0827-y

    Article  CAS  PubMed  Google Scholar 

  • Swanson DL (1995) Seasonal variation in thermogenic capacity of migratory warbling vireos. Auk 112:870–877. doi:10.2307/4089019

    Article  Google Scholar 

  • Swanson DL (2010) Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson CF (ed) Current ornithology, vol 17. Springer, New York, pp 75–129. doi:10.1007/978-1-4419-6421-2_3

    Google Scholar 

  • Swanson DL, Dean KL (1999) Migration-induced variation in thermogenic capacity in migratory passerines. J Avian Biol 30:245–254. doi:10.2307/3677350

    Article  Google Scholar 

  • Swanson DL, Zhang Y, Liu J-S, Merkord CL, King MO (2014) Relative roles of temperature and photoperiod as drivers of metabolic flexibility in dark-eyed juncos. J Exp Biol 217:866–875. doi:10.1242/jeb.096677

    Article  CAS  PubMed  Google Scholar 

  • Tallman DT, Swanson DL, Palmer JS (2002) Birds of South Dakota, 3rd edn. South Dakota Ornithologists’ Union, Aberdeen

    Google Scholar 

  • Terrill SB, Ohmart RD (1984) Facultative extension of fall migration by yellow-rumped warblers (Dendroica coronata). Auk 101:427–438. doi:10.2307/4086595

    Google Scholar 

  • Thompson JN, Willson MF (1979) Evolution of temperate fruit/bird interactions: phenological strategies. Evolution: 973–982

  • Thorne RF, Ralston KJ, de Bock CE, Mhaidat NM, Zhang XD, Boyd AW, Burns GF (2010) Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum. Biochim Biophys Acta 1803:1298–1307. doi:10.1016/j.bbamcr.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  • van Breda E, Keizer H, Vork M, Surtel DM, de Jong Y, van der Vusse G, Glatz JC (1992) Modulation of fatty-acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Pflügers Archiv 421:274–279. doi:10.1007/BF00374838

    Article  PubMed  Google Scholar 

  • Vézina F, Williams TD (2005) Interaction between organ mass and citrate synthase activity as an indicator of tissue maximal oxidative capacity in breeding European starlings: implications for metabolic rate and organ mass relationships. Funct Ecol 19:119–128. doi:10.1111/j.0269-8463.2005.00942.x

    Article  Google Scholar 

  • Vézina F, Jalvingh KM, Dekinga A, Piersma T (2006) Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size. J Exp Biol 209:3141–3154. doi:10.1242/jeb.02338

    Article  PubMed  Google Scholar 

  • Weber TP, Piersma T (1996) Basal metabolic rate and the mass of tissues differing in metabolic scope: migration-related covariation between individual knots Calidris canutus. J Avian Biol 27:215–224. doi:10.2307/3677225

    Article  Google Scholar 

  • Zajac DM, Cerasale DJ, Landman S, Guglielmo CG (2011) Behavioral and physiological effects of photoperiod-induced migratory state and leptin on Zonotrichia albicollis: II. Effects on fatty acid metabolism. Gen Comp Endocrinol 174:269–275. doi:10.1016/j.ygcen.2011.08.024

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, King MO, Harmon E, Swanson DL (2015) Summer-to-winter phenotypic flexibility of fatty acid transport and catabolism in small birds. Physiol Biochem Zool (in press)

Download references

Acknowledgments

We thank Tricia Larson, Michelle Harmon, Ming Liu, Jake Johnson, Travis Carter and Will Culver for technical assistance in the laboratory and field. We thank Ken Renner for access to property for collection of birds. Three anonymous reviewers provided constructive comments on a previous version of this manuscript, and we thank them for their efforts. This research was funded by NSF IOS-1021218 to DLS. Research reported in this manuscript was also supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103443. Its contents are solely the responsibility of the authors and do not necessarily represent official views of NIGMS or NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., King, M.O., Harmon, E. et al. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds. J Comp Physiol B 185, 797–810 (2015). https://doi.org/10.1007/s00360-015-0921-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0921-9

Keywords

Navigation