Thermoregulation in endotherms: physiological principles and ecological consequences

Abstract

In a seminal study published nearly 70 years ago, Scholander et al. (Biol Bull 99:259–271, 1950) employed Newton’s law of cooling to describe how metabolic rates (MR) in birds and mammals vary predictably with ambient temperature (T a). Here, we explore the theoretical consequences of Newton’s law of cooling and show that a thermoregulatory polygon provides an intuitively simple and yet useful description of thermoregulatory responses in endothermic organisms. This polygon encapsulates the region in which heat production and dissipation are in equilibrium and, therefore, the range of conditions in which thermoregulation is possible. Whereas the typical U-shaped curve describes the relationship between T a and MR at rest, thermoregulatory polygons expand this framework to incorporate the impact of activity, other behaviors and environmental conditions on thermoregulation and energy balance. We discuss how this framework can be employed to study the limits to effective thermoregulation and their ecological repercussions, allometric effects and residual variation in MR and thermal insulation, and how thermoregulatory requirements might constrain locomotor or reproductive performance (as proposed, for instance, by the heat dissipation limit theory). In many systems the limited empirical knowledge on how organismal traits may respond to environmental changes prevents physiological ecology from becoming a fully developed predictive science. In endotherms, however, we contend that the lack of theoretical developments that translate current physiological understanding into formal mechanistic models remains the main impediment to study the ecological and evolutionary repercussions of thermoregulation. In spite of the inherent limitations of Newton’s law of cooling as an oversimplified description of the mechanics of heat transfer, we argue that understanding how systems that obey this approximation work can be enlightening on conceptual grounds and relevant as an analytical and predictive tool to study ecological phenomena. As such, the proposed approach may constitute a powerful tool to study the impact of thermoregulatory constraints on variables related to fitness, such as survival and reproductive output, and help elucidating how species will be affected by ongoing climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Anderson KJ, Jetz W (2005) The broad-scale ecology of energy expenditure of endotherms. Ecol Lett 8:310–318

    Article  Google Scholar 

  2. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, NY

    Google Scholar 

  3. Aschoff J (1981) Thermal conductance in mammals and birds: its dependence in body size and circadian phase. Comp Biochem Physiol 69A:611–619

    Article  Google Scholar 

  4. Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156:390–415

    Article  Google Scholar 

  5. Bacigalupe LD, Bozinovic F (2002) Design, limitations and sustained metabolic rate: lessons from small mammals. J Exp Biol 205:2963–2970

    PubMed  Google Scholar 

  6. Bacigalupe LD, Rezende EL, Kenagy GK, Bozinovic F (2003) Activity and space use by degus: a trade-off between thermal conditions and food availability? J Mamm 84:311–318

    Article  Google Scholar 

  7. Bacigalupe LD, Nespolo RF, Opazo JC, Bozinovic F (2004a) Phenotypic flexibility in a novel thermal environment: phylogenetic inertia in thermogenic capacity and evolutionary adaptation in organ size. Physiol Biochem Zool 77:805–815

    PubMed  Article  Google Scholar 

  8. Bacigalupe LD, Nespolo RF, Bustamante DM, Bozinovic F (2004b) The quantitative genetics of sustained energy budget in a wild mouse. Evolution 58:421–429

    PubMed  Article  Google Scholar 

  9. Bakken GS (1976) A heat transfer analysis of animals: unifying concepts and the application of metabolic chamber data to field ecology. J Theor Biol 60:337–384

    CAS  PubMed  Article  Google Scholar 

  10. Bakken GS, Gates DM (1974) Notes on “heat loss from a Newtonian animal”. J Theor Biol 45:283–292

    CAS  PubMed  Article  Google Scholar 

  11. Bartholomew GA (1982) Body temperature and energy metabolism. In: Gordon MS (ed) Animal physiology. MacMillan, NY, pp 333–406

    Google Scholar 

  12. Berteaux D (1998) Testing energy expenditure hypotheses: reallocation versus increased demand in Microtus pennsylvanicus. Acta Theriol 43:13–21

    Article  Google Scholar 

  13. Boratynski Z, Koskela E, Oksanen TA (2010) Sex-specific selection on energy metabolism: selection coefficients for winter survival. J Evol Biol 23:1969–1978

    CAS  PubMed  Article  Google Scholar 

  14. Boyles JG, Brack V (2009) Modeling survival rates of hibernating mammals with individual-based models of energy expenditure. J Mamm 90:9–16

    Article  Google Scholar 

  15. Boyles JG, Willis CKR (2010) Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome? Front Ecol Environ 8:92–98

    Article  Google Scholar 

  16. Boyles JG, Smit B, McKechnie AE (2011) A new comparative metric for estimating heterothermy in endotherms. Physiol Biochem Zool 84:115–123

    PubMed  Article  Google Scholar 

  17. Boyles JG, Thompson AB, McKechnie AE, Malan E, Humphries MM, Careau V (2013) A global heterothermic continuum in mammals. Global Ecol Biogeogr 22:1029–1039

    Article  Google Scholar 

  18. Bozinovic F, Rosenmann M (1989) Maximum metabolic rate of rodents: physiological and ecological consequences on distributional limits. Funct Ecol 3:173–181

    Article  Google Scholar 

  19. Bozinovic F, Novoa FF, Veloso C (1990) Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus (Cricetidae) in the Andes Range. Physiol Zool 63:1216–1231

    Article  Google Scholar 

  20. Bozinovic F, Lagos JA, Marquet PA (1999) Geographic energetics of the Andean mouse, Abrothrix andinus. J Mamm 80:205–209

    Article  Google Scholar 

  21. Bozinovic F, Ferri-Yañez F, Naya H, Araujo M, Naya D (2014) Thermal tolerances in rodents: species that evolved in cold climates exhibit a wider thermoneutral zone. Evol Ecol Res 16:143–152

    Google Scholar 

  22. Bradley SR, Deavers DR (1980) A re-examination of the relationship between thermal conductance and body weight in mammals. Comp Biochem Physiol 65A:465–476

    Article  Google Scholar 

  23. Bronson FH (1985) Mammalian reproduction: an ecological perspective. Biol Reprod 32:1–26

    CAS  PubMed  Article  Google Scholar 

  24. Bruinzeel LW, Piersma T (1998) Cost reduction in the cold: heat generated by terrestrial locomotion partly substitutes for thermoregulation costs in Knot Calidris canutus. Ibis 140:323–328

    Article  Google Scholar 

  25. Buckley LB, Hurlbert AH, Jetz W (2012) Broad-scale ecological implications of ectothermy and endothermy in changing environments. Global Ecol Biogeogr 21:873–885

    Article  Google Scholar 

  26. Burger JW (1949) A review of experimental investigations on seasonal reproduction in birds. Wilson Bull 61:211–230

    Google Scholar 

  27. Calder WA, King JR (1972) Body weight and the energetics of temperature regulation: a re-examination. J Exp Biol 56:775–780

    CAS  PubMed  Google Scholar 

  28. Canterbury G (2002) Metabolic adaptation and climatic constraints on winter bird distribution. Ecology 83:946–957

    Article  Google Scholar 

  29. Capellini I, Venditti C, Barton RA (2010) Phylogeny and metabolic scaling in mammals. Ecology 91:2783–2793

    PubMed  Article  Google Scholar 

  30. Careau V (2013) Basal metabolic rate, maximum thermogenic capacity and aerobic scope in rodents: interaction between environmental temperature and torpor use. Biol Lett 9:20121104

    PubMed Central  PubMed  Article  Google Scholar 

  31. Chai P, Chang AC, Dudley R (1998) Flight thermogenesis and energy conservation in hovering hummingbirds. J Exp Biol 201:963–968

    PubMed  Google Scholar 

  32. Chappell MA, Hammond KA (2004) Maximal aerobic performance of deer mice in combined cold and exercise challenges. J Comp Physiol B 174:41–48

    CAS  PubMed  Article  Google Scholar 

  33. Chappell MA, Bachman GC, Odell JP (1995) Repeatability of maximal aerobic performance in Belding’s Ground Squirrels, Spermophilus beldingi. Funct Ecol 9:498–504

    Article  Google Scholar 

  34. Chappell MA, Garland T, Rezende EL, Gomes FR (2004) Voluntary running in deer mice: speed, distance, energy costs and temperature effects. J Exp Biol 207:3839–3854

    PubMed  Article  Google Scholar 

  35. Clarke A, Rothery P (2008) Scaling of body temperature in mammals and birds. Funct Ecol 22:58–67

    Google Scholar 

  36. Clarke A, Rothery P, Isaac NJ (2010) Scaling of basal metabolic rate with body mass and temperature in mammals. J Anim Ecol 79:610–619

    PubMed  Article  Google Scholar 

  37. Conley KE (1985) Evaporative water loss: thermoregulatory requirements and measurements in the deer mouse and white rabbit. J Comp Physiol B 155:433–436

    CAS  PubMed  Article  Google Scholar 

  38. Conley KE, Porter WP (1986) Heat loss from deer mice (Peromyscus): evaluation of seasonal limits to thermoregulation. J Exp Biol 126:249–269

    CAS  PubMed  Google Scholar 

  39. Cooper SJ (2002) Seasonal metabolic acclimatization in Mountain Chickadees and Juniper Titmice. Physiol Biochem Zool 75:386–395

    PubMed  Article  Google Scholar 

  40. Daan S, Masman D, Grownewold A (1990) Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am J Physiol 259:R333–R340

    CAS  PubMed  Google Scholar 

  41. Dawson WR, Carey C (1976) Seasonal acclimatization to temperature in Cardueline Finches. J Comp Physiol 112:317–333

    Article  Google Scholar 

  42. Dawson WR, O’Connor TP (1996) Energetic features of avian thermoregulatory response. In: Carey C (ed) Avian Energetics and Nutritional Ecology. Chapman & Hall, NY, pp 85–124

    Google Scholar 

  43. Dawson TJ, Fanning D, Bergin TJ (1978) Metabolism and temperature regulation in the New Guines monotreme Zaglossus bruijni. Aust Zool 20:99–104

    Google Scholar 

  44. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  45. Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–707

    CAS  PubMed  Article  Google Scholar 

  46. Duttenhoffer MA, Swanson DL (1996) Relationship of basal to summit metabolic rate in passerine birds and the aerobic capacity model for the evolution of endothermy. Physiol Zool 69:1232–1254

    Article  Google Scholar 

  47. Feist DD, White RG (1989) Terrestrial mammals in cold. In: Wang LCH (ed) Advances in comparative and environmental physiology 4. Springer, Berlin, pp 328–360

    Google Scholar 

  48. Fletcher QE, Speakman JR, Boutin S, Lane JE, McAdam AG, Gorrell JC, Coltman DW, Humphries MM (2015) Daily energy expenditure during lactation is strongly selected in a free-living mammal. Funct Ecol 29:195–208

    Article  Google Scholar 

  49. Fournier F, Thomas DW, Garland T (1999) A test of two hypotheses explaining the seasonality of reproduction in temperate mammals. Funct Ecol 13:523–529

    Article  Google Scholar 

  50. Galloway SDR, Maughan RJ (1997) Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc 29:1240–1249

    CAS  PubMed  Article  Google Scholar 

  51. Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming? Trends Ecol Evol 26:285–291

    PubMed  Article  Google Scholar 

  52. Gavrilov VM (2014) Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in passeriformes and non-passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes. Quat Rev Biol 89:107–150

    Article  Google Scholar 

  53. Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Article  Google Scholar 

  54. Glazier DS (2008) Effects of metabolic level on the body size scaling of metabolic rate in birds and mammals. Proc R Soc B 275:1405–1410

    PubMed Central  PubMed  Article  Google Scholar 

  55. Goldstein DL (1988) Estimates of daily energy expenditure in birds: the time-energy budget as an integrator of laboratory and field studies. Am Zool 28:829–844

    Article  Google Scholar 

  56. Greenberg R, Cadena V, Danner RM, Tattersal G (2012) Heat loss may explain bill size differences between birds occupying different habitats. PLoS One 7:e40933

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  57. Greenwood PJ, Wheeler P (1985) The evolution of sexual size dimorphism in birds and mammals: a ‘hot blooded’ hypothesis. In: Greenwood PJ, Harvey PH, Slatkin M (eds) Evolution: essays in honour of John Maynard Smith. Cambridge University Press, Cambridge, pp 287–299

    Google Scholar 

  58. Grémillet D, Meslin L, Lescroel A (2012) Heat dissipation limit theory and the evolution of avian functional traits in a warming world. Funct Ecol 26:1001–1006

    Article  Google Scholar 

  59. Gwazdaukas FC, Lineweaver JA, Vinson WE (1981) Rates of conception by artificial insemination of dairy cattle. J Dairy Sci 64:358–362

    Article  Google Scholar 

  60. Hainsworth FR, Wolf LL (1970) Regulation of oxygen consumption and body temperature during torpor in a humming bird, Eulampis jugularis. Science 168:368–369

    CAS  PubMed  Article  Google Scholar 

  61. Hall CAS, Stanford JA, Hauer FR (1992) The distribution and abundance of organisms as a consequence of energy balances along multiple environmental gradients. Oikos 65:377–390

    Article  Google Scholar 

  62. Hammond KA, Diamond J (1997) Maximal sustained energy budgets in humans and animals. Nature 386:457–462

    CAS  PubMed  Article  Google Scholar 

  63. Hammond KA, Kristan DM (2000) Responses to lactation and cold exposure by Deer Mice (Peromyscus maniculatus). Physiol Biochem Zool 73:547–556

    CAS  PubMed  Article  Google Scholar 

  64. Hammond KA, Konarzewski M, Torres R, Diamond JM (1994) Metabolic ceilings under a combination of peak energy demands. Physiol Zool 68:1479–1506

    Article  Google Scholar 

  65. Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Phil Trans R Soc B 364:3341–3350

    PubMed Central  PubMed  Article  Google Scholar 

  66. Hart JS (1962) Seasonal acclimatization in four species of small wild birds. Physiol Zool 35:224–236

    Article  Google Scholar 

  67. Hart JS (1971) Rodents. In: Whittow CG (ed) Comparative physiology of thermoregulation. Academic Press, NY, pp 1–149

    Google Scholar 

  68. Hayes JP, O’Connor CS (1999) Natural selection on thermogenic capacity of high altitude deer mice. Evolution 53:1280–1287

    Article  Google Scholar 

  69. Heinrich B (1977) Why some animals have evolved to regulate a high body temperature? Am Nat 111:623–640

    Article  Google Scholar 

  70. Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706

    CAS  PubMed  Article  Google Scholar 

  71. Heldmaier G, Steinlechner S (1981) Seasonal pattern and energetics of short daily torpor in the Djungarian hamster, Phodopus sungorus. Oecologia 48:265–270

    Article  Google Scholar 

  72. Heldmaier G, Steinlechner S, Rafael J (1982) Nonshivering thermogenesis and cold resistance during seasonal acclimatization in the Djungarian Hamster. J Comp Physiol B 149:1–9

    Article  Google Scholar 

  73. Heller HC, Colliver GW (1974) CNS regulation of body tem perature during hibernation. Am J Physiol 227:583–589

    CAS  PubMed  Google Scholar 

  74. Hensaw RE (1968) Thermoregulation during hibernation: application of Newton’s law of cooling. J Theor Biol 20:79–90

    Article  Google Scholar 

  75. Hinds DS, Calder WA (1973) Temperature regulation of the Pyrrhuloxia and the Arizona cardinal. Physiol Zool 46:55–71

    Article  Google Scholar 

  76. Hinds D, Baudinette RV, Macmillen RE, Halpern EA (1993) Maximum metabolism and the aerobic factorial scope of endotherms. J Exp Biol 182:41–56

    CAS  PubMed  Google Scholar 

  77. Hirth K-D, Biesel W, Nachtigall W (1987) Pigeon flight in a wind tunnel III: regulation of body temperature. J Comp Physiol B 157:111–116

    Article  Google Scholar 

  78. Holloway JC, Geiser F (2001) Seasonal changes in the thermoenergetics of the marsupial sugar glider, Petaurus breviceps. J Comp Physiol B 171:643–650

    CAS  PubMed  Article  Google Scholar 

  79. Hudson DM, Bernstein MH (1981) Temperature regulation and heat balance in flying White-Necked Ravens, Corvus cryptoleucus. J Exp Biol 90:267–281

    Google Scholar 

  80. Hudson LN, Isaac NJB, Reuman DC (2013) The relationship between body mass and field metabolic rate among individual birds and mammals. J Anim Ecol 82:1009–1020

    PubMed Central  PubMed  Article  Google Scholar 

  81. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Alvarez-Perez HJ, Garland T (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B 276:1939–1948

    PubMed Central  PubMed  Article  Google Scholar 

  82. Humphries MM, Careau V (2011) Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr Comp Biol 51:419–431

    PubMed  Article  Google Scholar 

  83. Humphries MM, Thomas DW, Speakman JR (2002) Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418:313–316

    CAS  PubMed  Article  Google Scholar 

  84. Humphries MM, Boutin S, Thomas DW, Ryan JD, Selman C, McAdam AG, Berteaux D, Speakman JR (2005) Expenditure freeze: the metabolic response of small mammals to cold. Ecol Lett 8:1326–1333

    Article  Google Scholar 

  85. Jetz W, Rahbek C (2002) Geographic range size and determinants of avian species richness. Science 297:1548–1551

    CAS  PubMed  Article  Google Scholar 

  86. Johnson MS, Speakman JR (2001) Limits to sustained energy intake V: effect of cold-exposure during lactation in Mus musculus. J Exp Biol 204:1967–1977

    CAS  PubMed  Google Scholar 

  87. Karaca AG, Parker HM, McDaniel CD (2002) Elevated body temperature directly contributes to heat stress infertility of broiler breeder males. Poultry Sci 81:1892–1897

    CAS  Article  Google Scholar 

  88. Kearney M, Porter WP (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    PubMed  Article  Google Scholar 

  89. Kearney M, Shamakhy A, Tingley R, Karoly DJ, Hoffmann AA, Briggs PR, Porter WP (2014a) Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental-scale soil and weather data. Methods Ecol Evol 5:273–286

    Article  Google Scholar 

  90. Kearney M, Isaac AP, Porter WP (2014b) microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Sci Data 1:140006

    PubMed Central  PubMed  Article  Google Scholar 

  91. Kerr J, Packer L (1998) The impact of climate change on mammal diversity in Canada. Environ Monit Assess 49:263–270

    Article  Google Scholar 

  92. Khaliq I, Hof C, Prinziger R, Bohning-Gaese K, Pfenninger M (2014) Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc R Soc B 281:20141097

    PubMed Central  PubMed  Article  Google Scholar 

  93. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Article  Google Scholar 

  94. Kolokotrones T, Savage V, Deeds EJ, Fontana W (2010) Curvature in metabolic scaling. Nature 464:753–756

    CAS  PubMed  Article  Google Scholar 

  95. Konarzewski M, Diamond J (1994) Peak sustained metabolic rate and its individual variation in cold-stressed mice. Physiol Zool 67:1186–1212

    Article  Google Scholar 

  96. Konarzewski M, Ksiazek A, Lapo IB (2005) Artificial selection on metabolic rates and related traits in rodents. Integr Comp Biol 45:416–425

    PubMed  Article  Google Scholar 

  97. Koteja P (1991) On the relation between basal and field metabolic rates in birds and mammals. Funct Ecol 5:56–64

    Article  Google Scholar 

  98. Kurnath P, Dearing MD (2013) Warmer ambient temperatures depress liver function in a mammalian herbivore. Biol Lett 9:20130562

    PubMed Central  PubMed  Article  Google Scholar 

  99. Landry-Cuerrier M, Murno D, Thomas DW, Humprhies MM (2008) Climate and resource determinants of fundamental and realized niches of hibernating chipmunks. Ecology 89:3306–3316

    CAS  PubMed  Article  Google Scholar 

  100. Larose J, Boulay P, Sigal RJ, Wright HE, Kenny GP (2013) Age-related decrements in heat dissipation during physical activity occur as early as the age of 40. PLoS One 8:e83148

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  101. Lichtwark GA, Wilson AM (2007) Is Achilles tendon compliance optimised for maximum muscle efficiency during locomotion? J Biochem 40:1768–1775

    CAS  Google Scholar 

  102. Liknes ET, Scott SM, Swanson DM (2002) Seasonal acclimatization in the American Goldfinch revisited: to what extent do metabolic rates vary seasonally? Condor 104:548–557

    Article  Google Scholar 

  103. López-Calleja MJ, Bozinovic F (1995) Maximum metabolic rate, thermal insulation and aerobic scope in a small-sized Chilean hummingbird (Sephanoides sephaniodes). Auk 112:1034–1036

    Article  Google Scholar 

  104. Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    PubMed  Article  Google Scholar 

  105. Lovegrove BG (2005) Seasonal thermoregulatory responses in mammals. J Comp Physiol B 175:231–247

    PubMed  Article  Google Scholar 

  106. Lovegrove BG, Heldmaier G, Knight M (1991) Seasonal and circadian energetic patterns in an arboreal rodent, Thallomys paedulcus, and a burrow-dwelling rodent, Aethomys namaquensis, from the Kalahari desert. J Therm Biol 16:199–209

    Article  Google Scholar 

  107. Lovvorn JR (2007) Thermal substitution and aerobic efficiency: measuring and predicting effects of heat balance on endotherm diving energetics. Phil Trans R Soc B 362:2079–2093

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  108. Maloney SK, Moss G, Cartmell T, Mitchell D (2005) Alteration in diel activity patterns as a thermoregulatory strategy in black wildebeest (Connochaetes gnou). J Comp Physiol A 191:1055–1064

    Article  Google Scholar 

  109. Masman D, Gordijn M, Daan S, Dijkstra C (1986) Ecological energetics of the kestrel: field estimates of energy intake throughout the year. Ardea 74:24–39

    Google Scholar 

  110. McKechnie AE, Lovegrove BG (2002) Avian facultative hypothermic responses: a review. Condor 104:705–724

    Article  Google Scholar 

  111. McKechnie AE, Wolf BO (2010) Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol Lett 6:253–256

    PubMed Central  PubMed  Article  Google Scholar 

  112. McNab BK (1980) On estimating thermal conductance in endotherms. Physiol Zool 53:145–156

    Article  Google Scholar 

  113. McNab BK (1986) The influence of food habits on the energetics of eutherian mammals. Ecol Monogr 56:1–19

    Article  Google Scholar 

  114. McNab BK (1988) Complications inherent in scaling the basal rate of metabolism in mammals. Quat Rev Biol 63:25–54

    CAS  Article  Google Scholar 

  115. McNab BK (1995) Energy expenditure and conservation in frugivorous and mixed-diet carnivorans. J Mammal 76:206–222

    Article  Google Scholar 

  116. McNab BK (2002a) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, NY

    Google Scholar 

  117. McNab BK (2002b) Short-term energy conservation in endotherms in relation to body mass, habits, and environment. J Therm Biol 27:459–466

    Article  Google Scholar 

  118. McNab BK (2009) Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol 152:22–45

    Article  CAS  Google Scholar 

  119. McNab (2012) Extreme measures: the ecological energetics of birds and mammals. Univ Chicago Press, Chicago

    Google Scholar 

  120. McNab BK, Morrison P (1963) Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecol Monograph 33:63–82

    Article  Google Scholar 

  121. Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351

    Article  Google Scholar 

  122. Millien V, Sk Lyons, Olson L, Smith FA, Wilson AB, Yom-Tov Y (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecol Lett 9:853–869

    PubMed  Article  Google Scholar 

  123. Morrison P (1960) Some interrelations between weight and hibernation function. Bull Mus Comp Zool Harv 124:75–90

    Google Scholar 

  124. Morrison P, Ryser FA, Dawe AR (1959) Studies on the physiologyof the masked shrew Sorex cinereus. Physiol Zool 32:256–271

    Article  Google Scholar 

  125. Nagy KA (2005) Field metabolic rate and body size. J Exp Biol 208:1621–1625

    PubMed  Article  Google Scholar 

  126. Nagy KA, Girard I, Brown TK (1999) Energetics of free-ranging mammals, repriles and birds. Annu Rev Nutr 19:247–277

    CAS  PubMed  Article  Google Scholar 

  127. Naya DE, Spangerberg L, Naya H, Bozinovic F (2013a) How does evolutionary variation in basal metabolic rates arise? A statistical assessment and a mechanistic model. Evolution 67:1463–1476

    PubMed  Google Scholar 

  128. Naya DE, Spangerberg L, Naya H, Bozinovic F (2013b) Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation. Proc R Soc B 280:20131629

    PubMed Central  PubMed  Article  Google Scholar 

  129. Nespolo RF, Bacigalupe LD, Rezende EL, Bozinovic F (2001) When non-shivering thermogenesis equals maximun metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Physiol Biochem Zool 74:325–332

    CAS  PubMed  Article  Google Scholar 

  130. Nespolo RF, Bustamante DM, Bacigalupe LD, Bozinovic F (2005) Quantitative genetics of bioenergetics and growth-related traits in the wild mammal, Phyllotis darwini. Evolution 59:1829–1837

    CAS  PubMed  Google Scholar 

  131. Nybo L (2008) Hyperthermia and fatigue. J Appl Physiol 104:871–878

    PubMed  Article  Google Scholar 

  132. Odongo NE, AlZahal O, Lindinger MI, Duffield TF, Valdes EV, Terrell SP, McBride BW (2006) Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. J Anim Sci 84:447–455

    CAS  PubMed  Google Scholar 

  133. Okrouhlík J, Burda H, Kunc P, Knížková I, Šumbera R (2015) Surprisingly low risk of overheating during digging in two subterranean rodents. Physiol Behav 138:236–241

    PubMed  Article  CAS  Google Scholar 

  134. Olson JR (2009) Metabolic performance and distribution in Black-Capped (Poecile atricapillus) and Carolina Chickadees (P. carolinensis). Ph.D. dissertation, Ohio State University. xvi + 141 pp

  135. Olson VA, Davies RG, Orme CDL, Thomas GH, Meiri S, Blackburn TM, Gaston KJ, Owens IPF, Bennett PM (2009) Global biogeography and ecology of body size in birds. Ecol Lett 12:249–259

    PubMed  Article  Google Scholar 

  136. Owen-Smith RN (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge

  137. Perrin MR, Richardson EJ (2005) Metabolic rate, maximum metabolism, and advantages of torpor in the fat mouse Steatomys pratensis natalensis. J Therm Biol 30:603–610

    Article  Google Scholar 

  138. Peters RH (1983) The ecological implications of body size. Cambridge University Press, New York

  139. Peterson CC, Nagy KH, Diamond J (1990) Sustained metabolic scope. Proc Natl Acad Sci USA 87:2324–2328

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  140. Piersma T (2011) Why marathon migrants get away with high metabolic ceilings: towards an ecology of physiological restraint. J Exp Biol 214:295–302

    PubMed  Article  Google Scholar 

  141. Piersma T, Cadée N, Daan S (1995) Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the knot (Calidris canutus). J Comp Physiol B 165:37–45

    Article  Google Scholar 

  142. Pigot AL, Owens IPF, Orme CDL (2010) The environmental limits to geographic range expansion in birds. Ecol Lett 13:705–715

    PubMed  Article  Google Scholar 

  143. Porter WP, Gates DM (1969) Thermodynamic equilibria of animals with environment. Ecol Monographs 39:227–244

    Article  Google Scholar 

  144. Porter WP, Kearney M (2009) Size, shape, and the thermal niche of endotherms. Proc Natl Acad Sci USA 106:19666–19672

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  145. Porter WP, Munger JC, Stewart WE, Budaraju S, Jaeger J (1994) Endotherm energetics: from a scalable individual-based model to ecological applications. Austral J Zool 42:125–162

    Article  Google Scholar 

  146. Porter WP, Budaraju S, Stewart WE, Ramankutty N (2000) Calculating climate effects on birds and mammals: impacts on biodiversity, conservation, population parameters, and global community structure. Am Zool 40:597–630

    Google Scholar 

  147. Prinzinger R, Prebmar A, Schleucher E (1991) Body temperature in birds. Comp Biochem Physiol 99A:499–506

    Article  Google Scholar 

  148. Ramirez L, Diniz-Filho JAF, Hawkins BA (2008) Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds. Global Ecol Biogeogr 17:100–110

    Google Scholar 

  149. Rauw WM (2009) Resource allocation theory applied to farm animal production. CABI Publishing, Wallingford

    Google Scholar 

  150. Renaudeau D, Noblet J, Dourmad JY (2003) Effect of ambient tempera- ture on mammary gland metabolism in lactating sows. J Anim Sci 81:217–231

    CAS  PubMed  Google Scholar 

  151. Repasky RR (1991) Temperature and the northern distributions of wintering birds. Ecology 72:2274–2285

    Article  Google Scholar 

  152. Rezende EL, Swanson DL, Novoa FF, Bozinovic F (2002) Passerines versus nonpasserines: so far, no statistical differences in avian energetics. J Exp Biol 205:101–107

    PubMed  Google Scholar 

  153. Rezende El, Cortés A, Bacigalupe LD, Nespolo RF, Bozinovic F (2003) Ambient temperature limits above-ground activity of the subterranean rodent Spalacopus cyanus. J Arid Envir 55:63–74

    Article  Google Scholar 

  154. Rezende EL, Bozinovic F, Garland T (2004) Climatic adaptation and the evolution of maximum and basal rates of metabolism in rodents. Evolution 58:1361–1374

    PubMed  Article  Google Scholar 

  155. Ricklefs RE (1974) Energetics of reproduction in birds. In: Payntery RA (ed) Avian energetics. Publ Nuttall Omithol 15, pp 152–292

  156. Ricklefs RE, Konarzewski M, Daan S (1996) The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. Am Nat 147:1047–1071

    Article  Google Scholar 

  157. Riek A, Geiser F (2013) Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev 88:564–572

    PubMed  Article  Google Scholar 

  158. Rodrigues-Serrano E, Bozinovic F (2009) Interplay between global patterns of environmental temperature and variation in nonshivering thermogenesis of rodent species across large spatial scales. Global Change Biol 15:2116–2122

    Article  Google Scholar 

  159. Rogowitz GL (1996) Trade-offs in energy allocation during lactation. Am Zool 36:197–204

    Article  Google Scholar 

  160. Rogowitz GL (1998) Limits to milk flow and energy allocation during lactation of the hispid cotton rat (Sigmodon hispidus). Physiol Zool 71:312–320

    CAS  PubMed  Article  Google Scholar 

  161. Root T (1988) Energy constraints on avian distributions and abundances. Ecology 69:330–339

    Article  Google Scholar 

  162. Rosenmann M, Morrison P (1974) Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2. Am J Physiol 226:490–495

    CAS  PubMed  Google Scholar 

  163. Rosenmann M, Morrison P, Feist D (1975) Seasonal changes in the metabolic capacity of Red-backed Voles. Physiol Zool 48:303–310

    Article  Google Scholar 

  164. Schleucher E, Withers PC (2001) Re-evaluation of the allometry of wet thermal conductance for birds. Comp Physiol Biochem A 129:821–827

    CAS  Article  Google Scholar 

  165. Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

  166. Schmidt-Nielsen K, Dawson TJ, Crawford EC (1966) Temperature regulation in the echidna (Tachyglossus aculeatus). J Cell Physiol 67:63–71

    CAS  PubMed  Article  Google Scholar 

  167. Scholander PF, Hock R, Walters V, Johnson F, Irving L (1950) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:259–271

    CAS  PubMed  Article  Google Scholar 

  168. Sears MW, Hayes JP, O´Connor CSO, Geluso K, Sedinger JS (2006) Individual variation in thermogenic capacity affects above-ground activity of high-altitude deer mice. Funct Ecol 20:97–104

    Article  Google Scholar 

  169. Setchell BP, D’Occhio MJ, Hall MJ, Laurie MS, Tucker MJ, Zupp JL (1988) Is embryonic mortality increased in normal female rats mated to subfertile males? J Reprod Fert 82:567–574

    CAS  Article  Google Scholar 

  170. Sieg A, O’Connor MP, McNair JN, Grant BW, Agosta SJ, Dunham AE (2009) Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? Am Nat 174:720–733

    PubMed  Article  Google Scholar 

  171. Simons MJP, Reimert I, van der Vinne V, Hambly C, Vaanholt LM, Speakman JR, Gerkema MP (2011) Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory. J Exp Biol 214:38–49

    PubMed  Article  Google Scholar 

  172. Smit B, McKechnie AE (2010) Avian seasonal metabolic variation in a subtropical desert: basal metabolic rates are lower in winter than in summer. Funct Ecol 24:330–339

    Article  Google Scholar 

  173. Smith FA, Lyons SK (2011) How big should a mammal be? A macroecological look at mammalian body size over space and time. Phil Trans R Soc B 366:2364–2378

    PubMed Central  PubMed  Article  Google Scholar 

  174. Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JG, Saarinen JJ, Sibly RM, Stephens PR, Theodor J, Uhen MD (2010) The evolution of maximum body size of terrestrial mammals. Science 330:1216–1219

    CAS  PubMed  Article  Google Scholar 

  175. Soobramoney S, Downs CT, Adams NJ (2003) Physiological variability in the Fiscal Shrike Lanius collaris along an altitudinal gradient in South Africa. J Therm Biol 28:581–594

    Article  Google Scholar 

  176. Speakman JR (2000) The cost of living: field metabolic rates of small mammals. Adv Ecol Res 30:177–297

    Article  Google Scholar 

  177. Speakman JR (2008) The physiological costs of reproduction in small mammals. Phyl Trans R Soc B 363:375–398

    Article  Google Scholar 

  178. Speakman JR, Król E (2010a) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746

    PubMed  Google Scholar 

  179. Speakman JR, Król E (2010b) The heat dissipation limit theory and evolution of life histories in endotherms: time to dispose of the disposable soma theory? Integr Comp Biol 5:793–807

    Article  Google Scholar 

  180. Speakman JR, Hays CG, Webb PI (1994) Is hyperthermia a constraint on the diurnal activity of bats? J Theor Biol 171:325–341

    Article  Google Scholar 

  181. Speakman JR, Al-Jothery AH, Król E, Hawkins J, Chetoui A, Saint-Lambert A, Gamo Y, Shaw SC, Valencak T, Bünger L, Hill W, Vaanholt L, Hambly C (2014) Limits to sustained energy intake. XXII. Reproductive performance of two selected mouse lines with different thermal conductance. J Exp Biol 217:3718–3732

    PubMed  Article  Google Scholar 

  182. Strunk TH (1971) Heat loss from a Newtonian animal. J Theor Biol 33:35–61

    CAS  PubMed  Article  Google Scholar 

  183. Swanson DL (2010) Seasonal metabolic variation in birds: functional and mechanistic correlates. In: Thompson CF (ed) Current Ornithology, vol 17. Springer, New York, pp 75–129

  184. Swanson DL, Garland T (2009) The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions. Evolution 63:184–194

    CAS  PubMed  Article  Google Scholar 

  185. Swanson DL, Liknes ET (2006) A comparative analysis of thermogenic capacity and cold tolerance in small birds. J Exp Biol 209:466–474

    PubMed  Article  Google Scholar 

  186. Symonds MRE, Elgar MA (2002) Phylogeny affects estimation of metabolic scaling in mammals. Evolution 56:2330–2333

    PubMed  Article  Google Scholar 

  187. Szafranska PA, Zub K, Konarzewski M (2007) Long-term repeatability of body mass and resting metabolic rate in free-living weasels, Mustela nivalis. Funct Ecol 21:731–737

    Article  Google Scholar 

  188. Teplitsky C, Millien V (2014) Climate warming and Bergmann’s rule through time: is there any evidence? Evol Appl 7:156–168

    PubMed Central  PubMed  Article  Google Scholar 

  189. Thomas SP, Suthers RA (1972) The physiology and energetics of bat fligh. J Exp Biol 57:317–335

    Google Scholar 

  190. Tieleman BI, Williams JB (1999) The role of hyperthermia in the water economy of desert birds. Physiol Biochem Zool 72:87–100

    CAS  PubMed  Article  Google Scholar 

  191. Tieleman BI, Williams JB, LaCroix F, Paillat P (2002) Physiological responses of Houbara bustards to high ambient temperatures. J Exp Biol 205:503–511

    PubMed  Google Scholar 

  192. Tieleman BI, Williams JB, Bloomer P (2003) Adaptation of metabolism and evaporative water loss along an aridity gradient. Proc R Soc Lond B 270:207–214

    Article  Google Scholar 

  193. Torre-Bueno JR (1976) Temperature regulation and heat dissipation during flight in birds. J Exp Biol 65:471–482

    CAS  PubMed  Google Scholar 

  194. Vezina F, Jalvingh KM, Dekinga A, Piersma T (2006) Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size. J Exp Biol 209:3141–3154

    PubMed  Article  Google Scholar 

  195. Violle C, Reich PB, Pacala SW, Enquist BJ, Kattje J (2014) The emergence and promise of functional biogeography. Proc Natl Acad Sci USA 38:13690–13696

    Article  CAS  Google Scholar 

  196. Voigt CC, Lewanzik D (2011) Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc R Soc B 278:2311–2317

    PubMed Central  PubMed  Article  Google Scholar 

  197. Walsberg GE (2000) Small mammals in hot deserts: some generalizations revisited. Bioscience 50:109–120

    Article  Google Scholar 

  198. Wang LCH (1989) Ecological, physiological, and biochemical aspects of torpor in mammals and birds. In: Wang LCH (ed) Comparative and Environmental Physiology 4. Springer, Berlin, pp 361–402

    Google Scholar 

  199. Wanner SP, Costa KA, Soares ADN, Cardoso VN, Coimbra CC (2014) Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity. Int J Biometeor 58:1077–1085

    Article  Google Scholar 

  200. Wauters LA (2000) Squirrels: medium-sized granivores in woodland habitats. In: Halle S, Stenseth NC (eds) Activity patterns in small mammals: an ecological approach. Springer, Berlin, pp 131–144

    Google Scholar 

  201. Weathers W, Schoenbaechler C (1976) Contribution of gular flutter to evaporative cooling in Japanese quail. J Appl Physiol 40:521–524

    CAS  PubMed  Google Scholar 

  202. Weathers WW, Sullivan KA (1993) Seasonal patterns of time and energy allocation by birds. Physiol Zool 66:511–536

    Article  Google Scholar 

  203. Webb DR (1987) Thermal tolerance of avian embryos: a review. Condor 89:874–898

    Article  Google Scholar 

  204. Webster MD, Weathers WW (1990) Heat produced as a by-product of foraging activity contributes to thermoregu- lation by verdins, Auriparus flaviceps. Physiol Zool 63:777–794

    Article  Google Scholar 

  205. Weibel ER, Bacigalupe LD, Schmitt B, Hoppeler H (2004) Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Resp Physiol Neurobiol 140:115–132

    Article  Google Scholar 

  206. Weinert D, Waterhouse J (1998) Diurnally changing effects of locomotor activity on body temperature in laboratory mice. Physiol Behav 63:837–843

    CAS  PubMed  Article  Google Scholar 

  207. Westerterp KR, Speakman JR (2008) Physical activity energy expenditure has not declined since the 1980s and matches energy expenditures of wild mammals. Int J Obesity 32:1256–1263

    CAS  Article  Google Scholar 

  208. White CR, Seymour RS (2005) Allometric scaling of mammalian metabolism. J Exp Biol 208:1611–1619

    CAS  PubMed  Article  Google Scholar 

  209. White CR, Blackburn TM, Marin GR, Butler PJ (2007) Basal metabolic rate of birds is associated with habitat temperature and precipitation, not primary productivity. Proc R Soc B 274:287–293

    PubMed Central  PubMed  Article  Google Scholar 

  210. White CR, Blackburn TM, Seymour RS (2009) Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63:2658–2667

    PubMed  Article  Google Scholar 

  211. Wiener J (1992) Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends Ecol Evol 7:384–388

    Article  Google Scholar 

  212. Wiersma P, Chappell MA, Williams JB (2007a) Cold- and exercise-induced peak metabolic rates in tropical birds. Proc Natl Acad Sci USA 104:20866–20871

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  213. Wiersma P, Muñoz-Garcia Waler A, Williams JB (2007b) Tropical birds have a slow pace of life. Proc Natl Acad Sci USA 104:9340–9345

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  214. Williams JB, Tieleman BI (2000) Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J Exp Biol 203:3153–3159

    CAS  PubMed  Google Scholar 

  215. Withers PC (1992) Comparative animal physiology. Saunders, Fort Worth

    Google Scholar 

  216. Withers PC, Cooper CE, Larcombe AN (2006) Environmental correlates of physiological variables in marsupials. Physiol Biochem Zool 79:437–453

    CAS  PubMed  Article  Google Scholar 

  217. Wunder BA (1970) Energetics of running activity in Merriam’s chipmunk, Eutamias merriami. Comp Biochem Physiol 33:821–836

    Article  Google Scholar 

  218. Wunder BA (1975) A model for estimating metabolic rate of active or resting mammals. J Theor Biol 49:345–354

    CAS  PubMed  Article  Google Scholar 

  219. Zerba E, Walsberg GE (1992) Exercise-generated heat contributes to thermoregulation by Gambel’s quail in the cold. J Exp Biol 171:409–422

    Google Scholar 

  220. Zerba E, Dana AN, Lucia MA (1999) The influence of wind and locomotor activity on surface temperature and energy expenditure of the eastern house finch (Carpodacus mexicanus) during cold stress. Physiol Biochem Zool 72:265–276

    CAS  PubMed  Article  Google Scholar 

  221. Zhang X-Y, Wang D-H (2007) Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt’s voles Lasiopodomys brandtii. J Exp Biol 210:512–521

    PubMed  Article  Google Scholar 

  222. Zub K, Fletcher QE, Szafranska PA, Konarzewski M (2013) Male weasels decrease activity and energy expenditure in response to high ambient temperatures. PLoS One 8:e72646

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  223. Zub K, Szafrańska PA, Konarzewski M, Redman P, Speakman JR (2009) Trade-offs between activity and thermoregulation in a small carnivore, the least weasel Mustela nivalis. Proc R Soc B 276:1921–1927

    PubMed Central  CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank L. E. Castañeda, M. Santos, F. Bozinovic and D. L. Swanson for discussions at different stages of the conception of this manuscript and comments on previous drafts, and Ian Hume and four anonymous reviewers for their extensive comments on the original submission. LDB was supported by a FONDECYT grant 1120461.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrico L. Rezende.

Additional information

Communicated by I. D. Hume.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 547 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezende, E.L., Bacigalupe, L.D. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comp Physiol B 185, 709–727 (2015). https://doi.org/10.1007/s00360-015-0909-5

Download citation

Keywords

  • Animal energetics
  • Bergmann’s rule
  • Geographic distribution
  • Macrophysiology
  • Metabolic rate
  • Thermal conductance
  • Thermal insulation