Skip to main content
Log in

Rainbow smelt: the unusual case of cryoprotection by sustained glycerol production in an aquatic animal

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Rainbow smelt flourish at −1.8 °C, the freezing point of sea water. An antifreeze protein contributes to freeze point depression but, more importantly, cryoprotection is due to an elevation in osmotic pressure, by the accumulation of glycerol. The lower the water temperature, the higher the plasma glycerol with levels recorded as high as 400 mmol l−1. Glycerol freely diffuses out in direct relation to the glycerol concentration and fish may lose as much as 15 % of their glycerol reserve per day. Glycerol levels decrease from a maximum in February/March while water temperature is still sub-zero. The decrease in glycerol may respond to a photoperiod signal as opposed to initiation which is triggered by low temperature. The initial increase in glycerol level is supported by liver glycogen but high sustained glycerol level is dependent upon dietary carbohydrate and protein. The metabolic pathways leading to glycerol involve flux from glycogen/glucose to the level of dihydroxyacetone phosphate (DHAP) via the initial part of glycolysis and from amino acids via a truncated gluconeogenesis again to the level of DHAP. DHAP in turn is converted to glycerol 3-phosphate (G3P) and then directly to glycerol. The key to directing DHAP to G3P is a highly active glycerol 3-P dehydrogenase. G3P is converted directly to glycerol via G3P phosphatase, the rate-limiting step in the process. The transition to glycerol production is associated with increased activities of enzymes at key loci in the top part of glycogenolysis/glycolysis. Curtailment of the final section of glycolysis may reside at the level of pyruvate oxidation with an inactivation of pyruvate dehydrogenase (PDH) driven by increased levels of PDH kinase. Enzymes associated with amino acid trafficking are elevated as is the pivotal enzyme phosphoenolpyruvate carboxykinase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFP:

Antifreeze protein

AAT:

Alanine aminotransferase

AQP:

Aquaporin

DHAP:

Dihydroxyacetone phosphate

FAD:

Flavin adenine nucleotide (oxidized)

FADH2 :

Flavin adenine nucleotide (reduced)

FBPase:

Fructose 1,6 bisphosphatase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GDH:

Glutamate dehydrogenase

GK:

Glycerol kinase

G3P:

Glycerol 3-P

G3PDH:

NAD+-dependent glycerol 3-P dehydrogenase

G3P Pase:

Glycerol 3-P phosphatase

LDH:

Lactate dehydrogenase

OXA:

Oxaloacetate

PDH:

Pyruvate dehydrogenase

PEP:

Phosphoenolpyruvate

PEPCK:

Phosphoenolpyruvate carboxykinase

PFK:

Phosphofructokinase

PK:

Pyruvate kinase

TMAO:

Trimethylamine oxide

References

  • Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels––from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barat A, Goel C, Tyagi A, Ali S, Sahoo PK (2012) Molecular cloning and expression profile of snow trout GPDH gene in response to abiotic stress. Mol Biol Rep 39:10843–10849

    Article  CAS  PubMed  Google Scholar 

  • Batke J, Asbóth G, Lakatos S, Schmitt B, Cohen R (1980) Substrate-induced dissociation of glycerol-3-phosphate dehydrogenase and its complex formation with fructose-bisphosphate aldolase. Eur J Biochem 107:389–394

    Article  CAS  PubMed  Google Scholar 

  • Berrada W, Naya A, Ouafik L, Bourhim N (2000) Effect of hibernation, thyroid hormones and dexamethasone on cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase from jerboa (Jaculus orientalis). Comp Biochem Physiol B 125:439–449

    Article  CAS  PubMed  Google Scholar 

  • Cedà J, Finn RN (2010) Piscine aquaporins: an overview of recent advances. J Exp Zool 313A:623–650

    Article  Google Scholar 

  • Clow KA, Driedzic WR (2012) Glycerol uptake is by passive diffusion in the heart but by facilitated transport in RBCs at high glycerol levels in cold acclimated rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 302:R1012–R1021

    Article  CAS  PubMed  Google Scholar 

  • Clow KA, Ewart KV, Driedzic WR (2008) Low temperature directly activates the initial glycerol antifreeze response in isolated rainbow smelt (Osmerus mordax) liver cells. Am J Physiol Regul Integr Comp Physiol 295:R961–R970

    Article  CAS  PubMed  Google Scholar 

  • Costanzo JP, Lee RE Jr (2013) Avoidance and tolerance of freezing in ectothermic vertebrates. J Exp Biol 216:1961–1967

    Article  PubMed  Google Scholar 

  • Costanzo JP, Lee Jr RE (2005) Cryoprotection by urea in a terrestrially hibernating frog. J Exp Biol 208:4079–4089

    Article  PubMed  Google Scholar 

  • Costanzo JP, Lee Jr RE (2008) Urea loading enhances freezing survival and postfreeze recovery in a terrestrially hibernating frog. J Exp Biol 211:2969–2975

    Article  PubMed  Google Scholar 

  • Costanzo JP, do Amaral MCF, Rosendale AJ, Lee Jr RE (2013) Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 216:3461–3473

    Article  CAS  PubMed  Google Scholar 

  • Coughlin DJ, Long GM, Gessi NL (2014) Smelt muscle in winter: the effect of urea, glycerol, and trimethyloxide on contractile properties. Intg Comp Biol 54(Supp 1):E257

    Google Scholar 

  • Cziko PA, DeVries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during the summer warming. Pro Nat Acad Sci USA 111:14583–14588

    Article  CAS  Google Scholar 

  • de Groot MJM, de Jong YF, Coumans WA, Vandervusse GJ (1994) The hydrolysis of glycerol-3-phosphate into glycerol in cardiac tissue––Possible consequences for the validity of glycerol release as a measure of lypolysis. Pflügers Arch Eur J Phy 427:96–101

    Article  Google Scholar 

  • de la Roche M, Tessier SN, Storey KB (2012) Structural and functional properties of glycerol-3-phosphate dehydrogenase from a mammalian hibernator. Protein J 31:109–119

    Article  PubMed  Google Scholar 

  • Ditlecadet D, Driedzic WR (2013) Glycerol-3phosphatase and not lipid recycling is the primary pathway in the accumulation of high concentrations of glycerol in rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 304:R304–R312

    Article  CAS  PubMed  Google Scholar 

  • Ditlecadet D, Driedzic WR (2014) Glycerol synthesis in freeze-resistant rainbow smelt: towards the characterization of a key enzyme glycerol-3-phosphatase. Fish Physiol Biochem 40:257–266

    Article  CAS  PubMed  Google Scholar 

  • Ditlecadet D, Short CE, Driedzic WR (2011) Glycerol loss to water exceeds glycerol catabolism via glycerol kinase in freeze-resistant rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 300:R674–R684

    Article  CAS  PubMed  Google Scholar 

  • Driedzic WR, Short CE (2007) Relationship amongst food availability, glycerol and glycogen levels in low temperature challenged rainbow smelt (Osmerus mordax). J Exp Biol 210:2866–2872

    Article  CAS  PubMed  Google Scholar 

  • Driedzic WR, West JL, Sephton DH, Raymond JA (1998) Enzyme activity levels associated with the production of glycerol as an antifreeze in liver of rainbow smelt (Osmerus mordax). Fish Physiol Biochem 18:125–134

    Article  CAS  Google Scholar 

  • Driedzic WR, Clow KA, Short CE, Ewart KV (2006) Glycerol production in rainbow smelt (Osmerus mordax) may be triggered by low temperature alone and is associated with the activation of glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase. J Exp Biol 209:1016–1023

    Article  CAS  PubMed  Google Scholar 

  • Evans CW, Hellman L, Middleditch M, Wohnar JM, Brimble MA, DeVries AL (2012) Synthesis and recycline of antifreeze glycoproteins in polar fishes. Antarctic Sci 24:259–268

    Article  Google Scholar 

  • Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Clupea harengus harengus). Can J Zool 68:1652–1658

    Article  CAS  Google Scholar 

  • Ewart KV, Rubinsky B, Fletcher GL (1992) Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun 185:335–340

    Article  CAS  PubMed  Google Scholar 

  • Ewart KV, Richards RC, Driedzic WR (2001) Cloning of glycerol 3-phosphate dehydrogenase cDNA from two fish species and effect of temperature on enzyme expression in rainbow smelt (Osmerus mordax). Comp Biochem Physiol B 128:401–412

    Article  CAS  PubMed  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DL, Frisbie J, Diller A, Pandey RN, Krane CM (2010) Glycerol uptake be erythrocytes from warm- and cold-acclimated Cope’s gray treefrogs. J Comp Physiol B 180:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Gong H, Croft K, Driedzic WR, Ewart KV (2011) Chemical chaperoning action of glycerol on the antifreeze protein of rainbow smelt. J Therm Biol 36:78–83

    Article  CAS  Google Scholar 

  • Gordon MS, Amdur BH, Scholander PF (1962) Freezing resistance in some northern fishes. Biol Bull 122:52–62

    Article  Google Scholar 

  • Graham LA, Li J, Davidson WS, Davies PL (2012) Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes. BMC Evolutionary Biol 12:190

    Article  CAS  Google Scholar 

  • Graham LA, Hobbs RS, Fletcher GL, Davies PL (2013) Helical antifreeze proteins have independently evolved in fishes on four occasions. PLoS One 8:e81285

    Article  PubMed Central  PubMed  Google Scholar 

  • Hall JR, Clow KA, Rise ML, Driedzic WR (2011) Identification and validation of differentially expressed transcripts in a hepatocyte model of cold-induced glycerol production in rainbow smelt (Osmerus mordax). Am J Physiol Regul Integr Comp Physiol 301:R995–R1010

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Short CE, Rise ML, Driedzic WR (2012) Expression analysis of glycerol synthesis-related liver transcripts in rainbow smelt (Osmerus mordax) exposed to a controlled decrease in temperature. Physiol Biochem Zool 85:74–84

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Clow KA, Rise ML, Driedzic WR (2015) Cloning and characterization of aquaglyceroporin genes from rainbow smelt (Osmerus mordax) and transcript expression in response to cold temperature. Submitted for publication

  • Hansen RW, Reshef L (2003) Glyceroneogenesis revisited. Biochimie 85:1199–1205

    Article  Google Scholar 

  • Holmes WN, Donaldson EM (1969) The body composition and distribution of electrolytes. In: Hoar WW, Randall DJ (eds) Fish physiology, vol 1, Excretion, ionic regulation and metabolism. Academic Press, New York, pp 1–89

  • Hunter FR (1976) Permeability of trout erythrocytes to nonelectrolytes. Biol Bull 151:322–330

    Article  CAS  PubMed  Google Scholar 

  • Jacobs MH, Glassman HN, Parpart AK (1950) Hemolysis and zoological relationship. Comparative studies with four penetrating non-electrolytes. J Exp Zool 113:277–300

    Article  Google Scholar 

  • Leim AH, Scott WB (1966) Fishes of the Atlantic coast of Canada. Bulletin 155. Fisheries Research Board of Canada, Ottawa

  • Lewis JM, Ewart KV, Driedzic WR (2004) Freeze resistance in rainbow smelt (Osmerus mordax): seasonal pattern of glycerol and antifreeze protein levels and liver enzyme activity associated with glycerol production. Physiol Biochem Zool 77:415–422

    Article  CAS  PubMed  Google Scholar 

  • Liebscher RS, Richards RC, Lewis JM, Short CE, Muise DM, Driedzic WR, Ewart KV (2006) Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes. Physiol Biochem Zool 79:411–423

    Article  CAS  PubMed  Google Scholar 

  • Lin ECC (1977) Glycerol utilization and its regulation in mammals. Ann Rev Biochem 46:765–795

    Article  CAS  PubMed  Google Scholar 

  • Mutyam V, Puccetti JF, Goldstein DL, Krane CM (2011) Dynamic regulation of aquaglyceroporin expression in erythrocyte cultures from cold- and warm-acclimated Cope’s gray treefrog, Hyla chrysoscelis. J Exp Zool 315:424–437

    Article  CAS  Google Scholar 

  • Nguyen NHT, Gonzalez SV, Hassel B (2007) Formation of glycerol from glucose in rat brain and cultured brain cells. Augmentation with kainate or ischemia. J Neurochem 101:1694–1700

    Article  CAS  PubMed  Google Scholar 

  • Philip BN, Lee RE Jr (2010) Changes in abundance of aquaporin-like proteins occurs concomitantly with season acquisition of freeze tolerance in the goldenrod gall fly, Eurosta solidaginis. J Insect Physiol 56:679685

    Article  Google Scholar 

  • Philip BN, Yi SX, Elnitsky MA, Lee Jr RE (2008) Aquaporins play a role in desiccation and freeze tolerance in larvae of the goldenrod gall fly, Eurosta solidaginis. J Exp Biol 211:1114–1119

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA (1992) Glycerol is a colligative antifreeze in some northern fishes. J Exp Zool 262:347–352

    Article  CAS  Google Scholar 

  • Raymond JA (1993) Glycerol and water-balance in a near-isosmotic teleost, winter-acclimatized rainbow smelt. Can J Zool 71:1849–1854

    Article  CAS  Google Scholar 

  • Raymond JA (1994) Seasonal variations of trimethylamine oxide and urea in the blood of a cold-adapted marine teleost, the rainbow smelt. Fish Physiol Biochem 13:13–22

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA (1995) Glycerol synthesis in the rainbow smelt Osmerus mordax. J Exp Biol 198:2569–2573

    CAS  PubMed  Google Scholar 

  • Raymond JA (1998) Trimethylamine oxide and urea synthesis in rainbow smelt and some other northern fishes. Physiol Zool 71:515–523

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA (2015) Two potential fish glycerol-3-phosphate phosphatases. Fish Physiol Biochem (in press)

  • Raymond JA, Driedzic WR (1997) Amino acids are a source of glycerol in cold-acclimatized rainbow smelt. Comp Biochem Phys B 118:387–393

    Article  Google Scholar 

  • Raymond JA, Hassel A (2000) Some characteristics of freezing avoidance in two osmerids, rainbow smelt and capelin. J Fish Biol 57:1–7

    Article  CAS  Google Scholar 

  • Raymond JA, Hattori H, Tsumura K (1996) Metabolic responses of glycerol-producing osmerid fishes to cold temperature. Fisheries Sci 62:257–260

    CAS  Google Scholar 

  • Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, Tilghman SM, Hanson RW (2003) Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 278:30413–30416

    Article  CAS  PubMed  Google Scholar 

  • Richards RC, Achenbach JC, Short CE, Kimball J, Reith M, Driedzic WR, Ewart KV (2008) Seasonal expressed sequence tags of rainbow smelt (Osmerus mordax) revealed by subtractive hybridization and the identification of two genes up-regulated during winter. Gene 424:56–62

    Article  CAS  PubMed  Google Scholar 

  • Richards RC, Short CE, Driedzic WR, Ewart KV (2010) Seasonal changes in hepatic gene expression reveal modulation of multiple processes in rainbow smelt (Osmerus mordax). Mar Biotechnol 12:650–663

    Article  CAS  PubMed  Google Scholar 

  • Robinson JL, Hall JR, Charman M, Ewart KV, Driedzic WR (2011) Molecular analysis, tissue profiles, and seasonal patterns of cytosolic and mitochondrial GPDH in freeze-resistant rainbow smelt (Osmerus mordax). Physiol Biochem Zool 84:363–376

    Article  CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (1992) Natural freeze tolerance in ectothermic vertebrates. Ann Rev Physiol 54:619–637

    Article  CAS  Google Scholar 

  • Storey KB, Storey JM (2013) Molecular biology of freezing tolerance. Comprehensive Physiol 3:1283–1308

    Google Scholar 

  • Tordjman J, Chauvet G, Quette J, Beale EG, Forest C, Antoine B (2003) Thiazolidinediones block fatty acid release by inducing glyceroneogenesis in fat cells. J Biol Chem 278:187855–187890

    Article  Google Scholar 

  • Treberg JR, Lewis JM, Driedzic WR (2002a) Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus). Comp Biochem Phys A 132:433–438

    Article  CAS  Google Scholar 

  • Treberg JR, Wilson CE, Richards RC, Ewart KV, Driedzic WR (2002b) The freeze-avoidance response of smelt Osmerus mordax: initiation and subsequent suppression of glycerol, trimethylamine oxide and urea accumulation. J Exp Biol 205:1419–1427

    CAS  PubMed  Google Scholar 

  • vom Dahl S, Häussinger D (1997) Evidence for a phloretin-sensitive glycerol transport mechanism in the perfused rat liver. Am J Physiol 272:G563–G574

    CAS  PubMed  Google Scholar 

  • Walter JA, Ewart KV, Short CE, Burton IW, Driedzic WR (2006) Accelerated hepatic glycerol synthesis in rainbow smelt (Osmerus mordax) is fuelled directly by glucose and alanine: a H-1 and C-13 nuclear magnetic resonance study. J Exp Zool A 305:480–488

    Article  Google Scholar 

  • Woytanowski JR, Coughlin DJ (2013) Thermal acclimation in rainbow smelt, Osmerus mordax, lead to faster myotomal muscle contractile properties and improved swimming performance. Biol Open 2:343–350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kalhan SC, Hanson RW (2009) What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 284:27025–27029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman SL, Frisbie J, Goldstein DL, West J, Rivera K, Krane CM (2007) Excretion and conservation of glycerol, and expression of aquaporins and glyceroporins, during cold acclimation in Cope’s gray tree frog Hyla chrysoscelis. Am J Physiol Regul Integr Comp Physiol 292:R544–R555

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. James Raymond for introducing me to the glycerol story and with whom I collaborated in the early years of the program. Later, I enjoyed working with Dr. K. Vanya Ewart who brought expertise in molecular biology and physical chemistry to the questions. I had the privilege and pleasure of working with numerous research assistants and graduate students whose names appear repeatedly throughout the references. During the course of writing this paper, I held the Tier I, Canada Research Chair in Marine Bioscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Driedzic.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Driedzic, W.R. Rainbow smelt: the unusual case of cryoprotection by sustained glycerol production in an aquatic animal. J Comp Physiol B 185, 487–499 (2015). https://doi.org/10.1007/s00360-015-0903-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0903-y

Keywords

Navigation