Skip to main content
Log in

Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Strikingly, in spite of its physiological importance, information about occurrence, biochemical characteristics and mechanisms of regulation of aminopeptidase-N (APN) in the hepatopancreas of intertidal euryhaline crabs is still lacking. In this work, we determined the occurrence, biochemical characteristics, response to environmental salinity and dopamine of APN in the hepatopancreas of the euryhaline crab Neohelice granulata (Dana 1851) from the open mudflat of Mar Chiquita coastal lagoon (Buenos Aires province, Argentina). APN activity was maximal at pH and temperature range of 7.6–9.0 and 37–45 °C, respectively. APN activity exhibited Michaelis–Menten kinetics (apparent Km = 0.19 ± 0.10 mM) (pH 7.6, 37 °C) and appeared to be sensitive to bestatin (I 50 = 15 mM) and EDTA (I 50 = 9 mM). In crabs acclimated to 10 psu (hyper-regulation conditions) and 37 psu (hypo-regulation conditions), APN activity was about 45 and 160 % higher, respectively, than in 35 psu (osmoconformation). APN activity in the hepatopancreas was stimulated in vitro (about 137 %) by 10−4 M dopamine. Higher dopamine concentrations produced a similar extent of increase. The responses of APN activity to salinity and dopamine in vitro suggest the role of APN in digestive adjustments upon hyper and hypo-regulatory conditions and its modulation via direct mechanisms on hepatopancreas by dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahearn GA (1982) Water and solute transport in crustacean gastrointestinal tract. In: Podesta RB (ed) Membrane physiology of invertebrates. Marcel-Dekker Inc, New York, pp 261–339

    Google Scholar 

  • Ahearn GA, Clay LP (1988) Sodium-coupled sugar and amino acid transport in an acidic microenvironment. Comp Biochem Physiol A 90:627–634

    Article  CAS  PubMed  Google Scholar 

  • Alpers DH (1987) Digestion and absorption of carbohydrates and proteins. In: Johnson LR (ed) Physiology of the gastro-intestinal tract. Raven Press, New York, pp 1469–1487

    Google Scholar 

  • Asaro A, del Valle JC, López Mañanes AA (2011) Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda:Brachyura:Varunidae): partial characterization and response to low environmental salinity. Sci Mar 75:517–524

    Article  CAS  Google Scholar 

  • Athamena A, Brichon G, Trajkovic-Bodennec S, Pequeux A, Chapelle S, Bodennec J, Zwingelstein G (2011) Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly formed phosphatidylcholine with hemolymph. J Comp Physiol B 181:731–740

    Article  CAS  PubMed  Google Scholar 

  • Avramov M, Rock T, Pfister M, Schramm K-W, Schmidt SI, Griebler C (2013) Catecholamine levels in groundwater and stream amphipods and their response to temperature stress. Gen Comp Endocrinol 194:110–117

    Article  CAS  PubMed  Google Scholar 

  • Bas C, Lancia JP, Luppi T, Méndez-Casariego A, Kittlein M, Spivak E (2014) Influence of tidal regime, diurnal phase, habitat and season on feeding of an intertidal crab. Mar Ecol 35:319–333

    Article  Google Scholar 

  • Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26:88–130

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  CAS  PubMed  Google Scholar 

  • Bortolus A, Iribarne O (1999) Effects of the SW atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Mar Ecol Prog Ser 178:79–88

    Article  Google Scholar 

  • Botto F, Valiela I, Iribarne O, Martinetto P, Alberti J (2005) Impact of burrowing crabs on C and N sources, control and transformations in sediments and food webs of SW Atlantic estuaries. Mar Ecol Prog Ser 293:155–164

    Article  Google Scholar 

  • Boutet I, Long Kyb CL, Bonhomme F (2006) A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax. Gene 379:40–50

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive metod for the quantitation of microgran quantities of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Ceccaldi HJ (1989) Anatomy and physiology of digestive tract of crustaceans decapods reared in aquaculture. Adv Trop Aquac Aquacop-Ifremer, Actes de Colloque 9:243–259

    Google Scholar 

  • Chang CC, Wu ZR, Kuo CM, Cheng W (2007) Dopamine depresses immunity in the tiger shrimp Penaeus monodon. Fish Shellfish Immunol 23:24–33

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Yi-Lun L, Guiqing P, Fang L (2013) Structural basis for multifunctional roles of mammalian aminopeptidase. Proc Natl Acad Sci 109:17966–17971

    Article  Google Scholar 

  • Cheng W, Chieu HT, Tsai CH, Chen JC (2005) Effects of dopamine on the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol 19:375–385

    Article  CAS  PubMed  Google Scholar 

  • Chiu HT, Yeh SP, Huang SC, Chang CC, Kuo CM, Cheng W (2006) Dopamine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei. Aquacuture 25:558–566

    Article  Google Scholar 

  • Christie AE (2011) Crustacean neuroendocrine systems and their signaling agents. Cell Tissue Res 345:41–67

    Article  CAS  PubMed  Google Scholar 

  • Clark MC, Khan R, Baro DJ (2008) Crustacean dopamine receptors: localization and G protein coupling in the stomatogastric ganglion. J Neurochem 104:1006–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De La Ruelle M, Haijou M, Van. Herp F, Le Gol Y (1992) Aminopeptidase activity from the hepatopancreas of Procambarus clarkii. Biochem Syst Ecol 20:331–337

    Article  Google Scholar 

  • del Valle JC, López Mañanes AA (2008) Digestive strategies in the South American subterranean rodent Ctenomys talarum. Comp Biochem Physiol A 150:387–394

    Article  Google Scholar 

  • del Valle JC, López Mañanes AA (2011) Digestive flexibility in females of the subterranean rodent Ctenomys talarum in their natural habitat. J Exp Zool A 315:41–148

    Google Scholar 

  • del Valle JC, López Mañanes AA, Busch C (2004) Phenotypic flexibility of digestive morphology and physiology of the South American omnivorous rodent Akodon azarae (Rodentia:Sigmodontinae). Comp Biochem Physiol A 139:503–512

    Article  Google Scholar 

  • del Valle JC, Busch C, López Mañanes AA (2006) Phenotypic plasticity in response to low qualitydiet in the South American omnivorous rodent Akodon azarae (Rodentia:Sigmodontinae). Comp Biochem Physiol A 145:397–405

    Article  Google Scholar 

  • Dendinger JE (1987) Digestive proteases in the midgut gland of the atlantic blue crab, Callinectes sapidus. Comp Biochem Physiol B 88:503–506

    Article  Google Scholar 

  • Dittrich B (1992) Thermal acclimation and kinetics of a trypsin-like protease in eucarid crustaceans. J Comp Physiol B 162:38–46

    Article  CAS  Google Scholar 

  • Duka A, Ahearn GA (2013) l-leucine, l-methionine, and l-phenylalanine share a Na+/K+-dependent amino acid transporter in shrimp hepatopáncreas. J Comp Physiol B 183:763–771

    Article  CAS  PubMed  Google Scholar 

  • Fairweather SJ, Bröer A, O’Mara LM, Broer S (2012) Intestinal peptidases form functional complexes with the neutral amino acid transporter B0AT1. Biochem J 446:135–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fanjul E, Grela MA, Canepuccia A, Iribarne O (2008) The Southwest Atlantic intertidal burrowing crab Neohelice granulata modifies nutrient loads of phreatic waters entering coastal area. East Coast Shelf Sci 79:300–306

    Article  Google Scholar 

  • Figueiredo MSRB, Anderson AJ (2009) Digestive enzyme spectra in crustacean decapods (Paleomonidae, Portunidae and Penaeidae) feeding in the natural habitat. Aquac Res 40:282–291

    Article  CAS  Google Scholar 

  • Figueiredo MSRB, Kricker JA, Anderson AJ (2001) Digestive enzyme activities in the alimentary tract of redclaw crayfish, Cherax quadricarinatus (Parastacidae:Decapoda). J Crustacean Biol 21:334–344

    Article  Google Scholar 

  • Fingerman M, Nagabhushanam R, Sarojini R, Reddy SP (1994) Biogenic amines in crustaceans: identification, localization, and roles. J Crustacean Biol 14:413–437

    Article  Google Scholar 

  • Freire CA, Onken H, McNamara JC (2008) A structure function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A 151:272–304

    Article  Google Scholar 

  • Galgani F, Nagayama F (1987) Digestive proteinases in five species of Lithodidae (Crustacea Decapoda). Comp Biochem Physiol B 87:103–107

    Google Scholar 

  • Galgani FG, Benyamin Y, Ceccaldi HJ (1984) Identification of digestive proteinases of Penaeus kerathurus (Forskål): a comparison with Penaeus japonicus bate. Comp Biochem Physiol B 78:355–361

    Google Scholar 

  • Garner CW Jr, Behal J (1974) Human liver aminopeptidase. Role of Metal Ions in Mechanism of Action. Biochem-US 13:3229–3233

    Article  Google Scholar 

  • Genovese G, Senek M, Ortiz N, Regueira M, Towle DW, Tresguerres M, Luquet CM (2006) Dopaminergic regulation of ion transport in gills of the euryhaline semiterrestrial crab Chasmagnathus granulatus: interaction between D1- and D2-like receptors. J Exp Biol 209:2785–2793

    Article  CAS  PubMed  Google Scholar 

  • Goodman BE (2010) Insights into digestion and absorption of major nutrients in humans. Adv Physiol Ed 34:44–53

    Article  Google Scholar 

  • Halperin J, Genovese G, Tresguerres M, Luquet CM (2004) Modulation of ion uptake across posterior gills of the crab Chasmagnathus granulatus by dopamine and cAMP. Comp Biochem Physiol A 139:103–109

    Article  CAS  Google Scholar 

  • Hooper NM (1994) Families of zinc metalloproteases. FEBS Lett 354:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hsieh SL, Chen SM, Yang YH, Kuo CM (2006) Involvement of norepinephrine in the hyperglycemic responses of freshwater giant prawn, Macrobrachium rosenbergii under cold shock. Comp Biochem Physiol A 143:254–263

    Article  CAS  Google Scholar 

  • Huang HYH, Li Y, Wang Z (2005) Immunocytochemical localization of endocrine cells in the digestive system of the mud crab, Scylla serrata. J Xiamen Univ Nat Sci 44:94–97

    Google Scholar 

  • Iribarne OO, Bortolus A, Botto F (1997) Between-habitats differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:132–145

    Article  Google Scholar 

  • Jahn MP, Cavagni GM, Kaiser D, Kucharski LC (2006) Osmotic effect of choline and glycine betaine on the gills and hepatopancreas of the Chasmagnathus granulata crab submitted to hyperosmotic stress. J Exp Mar Biol Ecol 334:1–9

    Article  CAS  Google Scholar 

  • Karasov WH, Martínez del Rio C, Caviedes-Vidal E (2011) Ecological physiology of diet and digestive systems. Annu Rev Physiol 73:69–93

    Article  CAS  PubMed  Google Scholar 

  • Kelly SA, Panhuis TM, Stoehr AM (2012) Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr Physiol 2:1417–1439

    PubMed  Google Scholar 

  • Kotlo K, Shukla S, Tawar U, Skidgel RA, Danziger RS (2007) Aminopeptidase N reduces basolateral Na+-K+-ATPase in proximal tubule cells. Am J Physiol Renal Physiol 293:1047–1053

    Article  Google Scholar 

  • Larsen EH, Deaton LE, Onken H, O’Donnell M, Grosell M, Dantzler WH, Weihrauch D (2014) Osmoregulation and excretion. Compr Physiol 4:405–573

    PubMed  Google Scholar 

  • Li E, Chen L, Zeng C, Yu N, Xiong Z, Chen X, Qin JG (2008) Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aquaculture 274:80–86

    Article  CAS  Google Scholar 

  • Liu H, Pan L, Fu L (2008) Effect of salinity on hemolymph osmotic pressure, sodium concentration and Na+-K+-ATPase activity of gill of Chinese crab, Eriocheir sinensis. J Ocean Univ China 7:77–82

    Article  CAS  Google Scholar 

  • López Mañanes AA, Magnoni LJ, Goldemberg AL (2000) Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda). Comp Biochem Physiol B 127:85–95

    Article  PubMed  Google Scholar 

  • Lorenzon S, Edomi P, Giulianini PG, Mettulio R, Ferrero EA (2005) Role of biogenic amines and CHH in the crustacean hyperglycemic stress response. J Exp Biol 208:3341–3347

    Article  CAS  PubMed  Google Scholar 

  • Luciani N, Marie-Claire C, Ruffet E, Beaumont A, Roques BP, Fournié-Zaluski MC (1998) Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N (EC 3.4.11.2). Insights into its mechanism of action. Biochemistry 37:686–692

    Article  CAS  PubMed  Google Scholar 

  • Lucu Č, Towle DW (2003) Na++K+-ATPase in gills of aquatic crustacea. Comp Biochem Physiol A 135:195–214

    Article  Google Scholar 

  • Luppi T, Bas C, Méndez Casariego A, Albano M, Lancia J, Kittlein M, Rosenthal A, Farías N, Spivak E, Iribarne OO (2013) The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (=Chasmagnathus) granulata. Helgol Mar Res 67:1–15

    Article  Google Scholar 

  • Mane S, Madhujit D, Padmanabhakurup H, Sahayog J, Wasudeo G (2010) Purification and characterization of aminopeptidase N from chicken intestine with potential application in debittering. Process Biochem 45:1011–1016

    Article  CAS  Google Scholar 

  • Martins TL, Chittó ALF, Rossetti CR, Brondani CK, Kucharski LC, Da Silva RSM (2011) Effects of hypo- or hyperosmotic stress on lipid synthesis and gluconeogenic activity in tissues of the crab Neohelice granulata. Comp Biochem Physiol A 158:400–405

    Article  Google Scholar 

  • McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. Comp Biochem Physiol B 182:997–1014

    CAS  Google Scholar 

  • Méndez-Casariego A, Luppi T, Iribarne O, Daleo P (2011) Increase of organic matter transport between marshes and tidal flats by the burrowing crab Neohelice (Chasmagnathus) granulata Dana in SW Atlantic salt marshes. J Exp Mar Biol Ecol 401:110–117

    Article  Google Scholar 

  • Mentlein R (2004) Cell-surface peptidases. Int Rev Cytol 235:165–213

    CAS  PubMed  Google Scholar 

  • Michiels MS, del Valle JC, López Mañanes AA (2013) Effect of environmental salinity and dopamine injections on key digestive enzymes in hepatopancreas of the euryhaline crab Cyrtograpsus angulatus (Decapoda:Brachyura:Varunidae). Sci Mar 77:129–136

    Article  CAS  Google Scholar 

  • Michiels MS, del Valle JC, López Mañanes AA (2015) Lipase activity sensitive to dopamine, glucagon and cyclic AMP in hepatopancreas of the euryhaline burrowing crab Neohelice granulata. Crustaceana 88:51–65

    Article  Google Scholar 

  • Mo JL, Devos P, Trausch G (1998) Dopamine as a modulator of ionic transport and Na+/K+-ATPase activity in the gills of the Chinese crab Eriocheir sinensis. J Crustacean Biol 18:442–448

    Article  Google Scholar 

  • Morris S (2001) Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J Exp Biol 204:979–989

    CAS  PubMed  Google Scholar 

  • Naya DE, Veloso C, Sabat P, Bozinovic F (2011) Physiological flexibility and climate change: the case of digestive function regulation in lizards Comp. Biochem Physiol A 159:100–104

    Google Scholar 

  • Pan L, Liu H, Zhao Q (2014) Effect of salinity on the biosynthesis of amines in Litopenaeus vannamei and the expression of gill related ion transporter genes. J Ocean Univ China 13:453–459

    Article  CAS  Google Scholar 

  • Pavasovic A, Anderson AJ, Mather PB, Richardson NA (2007) Influence of dietary protein on digestive enzyme activity, growth and tail muscle composition in redclaw crayfish, Cherax quadricarinatus. Aquac Res 38:644–652

    Article  CAS  Google Scholar 

  • Pfenning DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  Google Scholar 

  • Piersma T, Drent J (2003) Phenotypic flexibility and the evolution of organismal design. Trends Ecol Evol 18:228–233

    Article  Google Scholar 

  • Pinoni SA, López Mañanes AA (2008) Partial characterization and response under hyperregulating conditions of Na+/K+-ATPase and levamisole-sensitive alkaline phosphatase activities in chela muscle of the euryhaline crab Cyrtograpsus angulatus. Sci Mar 72:15–24

    CAS  Google Scholar 

  • Pinoni SA, López Mañanes AA (2004) Alkaline phosphatase activity sensitive to environmental salinity and dopamine in muscle of the euryhaline crab Cyrtograpsus angulatus. J Exp Mar Biol Ecol 307:35–46

    Article  CAS  Google Scholar 

  • Pinoni SA, López Mañanes AA (2009) Na+ATPase activities in chela muscle of the euryhaline crab Neohelice granulata: differential response to environmental salinity. J Exp Mar Biol Ecol 372:91–97

    Article  CAS  Google Scholar 

  • Pinoni SA, Goldemberg AL, López Mañanes AA (2005) Alkaline phosphatase activities in muscle of the euryhaline crab Chasmagnathus granulatus: response to environmental salinity. J Exp Mar Biol Ecol 326:217–226

    Article  CAS  Google Scholar 

  • Pinoni SA, Michiels MS, López Mañanes AA (2013) Phenotypic flexibility in response to environmental salinity in the euryhaline crab Neohelice granulata from the mudflat and the saltmarsh of a SW coastal lagoon. Mar Biol 160:2647–2661

    Article  Google Scholar 

  • Ramirez-Otarola N, Narváez C, Sabat P (2011) Membrane-bound intestinal enzymes of passerine birds: dietary and phylogenetic correlates. J Comp Physiol B 181:817–827

    Article  CAS  PubMed  Google Scholar 

  • Resch-Sedlmeier G, Sedlmeier D (1999) Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones. Comp Biochem Physiol B 1:187–192

    Article  Google Scholar 

  • Romano N, Zeng C (2012) Osmoregulation in decapod crustaceans: implications to aquaculture productivity, methods for potential improvement and interactions with elevated ammonia exposure. Aquaculture 334:12–23

    Article  Google Scholar 

  • Roncari G, Zuber H (1969) Thermophilic aminopeptidases from Bacillus stearothermorphilus. Isolation, specificity, and general properties of the thermostable aminopeptidase. Int J Prot Res I:45–61

    Google Scholar 

  • Rossano R, Larocca M, Riccio P (2011) Digestive enzymes of the crustaceans munida and their application in cheese manufacturing: a review. Mar Drugs 9:1220–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sabat P, Novoa F, Bozinovic F, Martinez del Rio C (1998) Dietary flexibility and intestinal plasticity in birds: a field and laboratory study. Physiol Biochem Zool 71:226–236

    CAS  Google Scholar 

  • Sánchez-Paz A, García-Carreño F, Muhlia-Almazan A, Peregrino-Uriarte A, Hernández-López J, Yepiz-Plascencia G (2006) Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Molec Biol 36:241–249

    Article  Google Scholar 

  • Sanderink GJ, Artur Y, Siest G (1988) Human aminopeptidase. A review of the literature. Clin Chem Lab Med 26:795–807

    Article  CAS  Google Scholar 

  • Schein V, Fernandes Chittó AL, Etges R, Kucharski LC, vanWormhoudt A, da Silva R (2005) Effect of hyper or hypo-osmotic conditions on neutral amino acids uptake and oxidation in tissues of the crab Chasmagnathus granulata. Comp Biochem Physiol B: Biochem Mol Biol 140:561–567

    Article  Google Scholar 

  • Schleich CE, Goldemberg AL, López Mañanes AA (2001) Salinity dependent Na+/K+-ATPase activity in gills of euryhaline crab Chasmagnathus granulatus. Gene Physiol Biophys 20:255–256

    CAS  Google Scholar 

  • Scornik OA, Botbol V (2001) Bestatin as an experimental tool in mammals. Curr Drug Metab 2:67–85

    Article  CAS  PubMed  Google Scholar 

  • Simmons T, Mozo J, Wilson J, Ahearn GA (2012) Cation-dependent nutrient transport in shrimp digestive tract. J Comp Physiol B 182:209–216

    Article  CAS  PubMed  Google Scholar 

  • Spivak E (2010) The crab Neohelice (=Chasmagnathus) granulata: an emergent animal model from emergent countries. Helgol Mar Res 64:149–154

    Article  Google Scholar 

  • Spivak E, Anger K, Luppi T, Bas C, Ismael D (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita lagoon (Pcia. Bs As. Argentina). Helgol Meeres 48:59–78

    Article  Google Scholar 

  • Swetha CH, Sainath SB, Sreenivasula Reddy P (2014) Mode of action of dopamine in inducing hyperglycemia in the fresh water edible crab, Oziothelphusa senex senex. J Exp Zool 321A:531–539

    Article  Google Scholar 

  • Vanderheyden P, Demaegdt H, Swales J, Lenaerts P, De Backer JP, Vogel LK, Vauquelin G (2006) Synergistic inhibition of the enzymatic activity of aminopeptidase N by divalent metal ion chelators Fundam. Clin Pharmacol 20:613–619

    CAS  Google Scholar 

  • Wong AHM, Zhou D, Rini JM (2012) The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. J Biol Chem 287:36804–36813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh S, Chiu HT, Cheng W (2006) Norepinephrine induces transient modulation of the physiological responses of whiteleg shrimp, Litopenaeus vannamei. Aquaculture 254:693–700

    Article  CAS  Google Scholar 

  • Zhao Z-J, Chi Q-S, Liu Q-S, Zheng W-H, Liu J-S et al (2014) The shift of thermoneutral zone in striped hamster acclimated to different temperatures. PLoS One 1:e84396. doi:10.1371/journal.pone.0084396

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by grants from the University of Mar del Plata and from Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina. M.S. Michiels was supported by a Doctoral scholarship from CONICET (Argentina)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. López Mañanes.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michiels, M.S., del Valle, J.C. & López Mañanes, A.A. Biochemical characteristics and modulation by external and internal factors of aminopeptidase-N activity in the hepatopancreas of a euryhaline burrowing crab. J Comp Physiol B 185, 501–510 (2015). https://doi.org/10.1007/s00360-015-0899-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0899-3

Keywords

Navigation