Skip to main content

Advertisement

Log in

Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Black bears overwintering in outdoor hibernacula in Alaska decrease metabolism to as low as 25 % basal rates, while core body temperature (T b) decreases from 37 to 38 °C to a mid-hibernation average of 33 °C. T b develops cycles of 1.6–7.3 days length within a 30–36 °C range, with no circadian component. We do not know the mechanism or function underlying behind the T b cycles, although bears avoid T b of <30 °C and shorter cycles are predicted from higher rates of heat loss in colder conditions. To test this we manipulated den temperatures (T den) of 12 hibernating bears with body mass (BM) from 35.5 to 116.5 kg while recording T b, metabolic rate (M), and shivering. T b cycle length (0.8–11.2 days) shortened as T den decreased (partial R 2 = 0.490, p < 0.001). Large bears with low thermal conductance (TC) showed more variation in T b cycle length with changes in T den than did smaller bears with high TC. Minimum T b across cycles was not consistent. At low T den bears shivered both during rising and decreasing phases of T b cycles, with minimum shivering during the fastest drop in T b. At higher T den the T b pattern was more irregular. Mean M through T b cycles was negatively correlated to T den below lower critical temperatures (1.4–10.4 °C). Minimum M (0.3509 W/kg ± 0.0121 SE) during mid-hibernation scaled to BM [M (W) = 1.217 × BM (kg)0.6979, R 2 = 0.855, p < 0.001]. Hibernating thermal conductance (TC) was negatively correlated to BM (R 2 = 0.721, p < 0.001); bears with high TC had the same T b cycle length as bears with low TC except at high T den, thus not supporting the hypothesis that cooling rate alone determines T b cycle length. We conclude that T b cycling is effected by control of thermoregulatory heat production, and T b cycling may not be present when hibernating bears use passive thermoregulation. More intense shivering in the rising phase of cycles may contribute to the prevention of muscle disuse atrophy. Bears hibernating in cold conditions use more energy during hibernation than in warmer conditions. At T den below lower critical temperature, no extra energy expenditure results from T b cycling compared to keeping a stable T b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

T b :

Core body temperature

T den :

Den temperature

T outside :

Outside temperature

BM:

Body mass

M :

Metabolic rate

EMG:

Electromyogram

LCT:

Lower critical temperature

TC:

Total body thermal conductance

References

  • Barboza PS, Farley SD, Robbins CT (1997) Whole-body urea cycling and protein turnover during hyperphagia and dormancy in growing bears (Ursus americanus and U. arctos). Can J Zool 75:2129–2136

    Article  Google Scholar 

  • Barnes BM, Tøien Ø, Blake J, Grahn D, Heller HC, Edgar DM (1999) Hibernation in black bears: body temperature cycles and sleep. FASEB J 13:A740

    Google Scholar 

  • Boyer BB, Barnes BM (1999) Molecular and metabolic aspects of mammalian hibernation. Bioscience 49:713–724

    Article  Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol 279:R255–R262

    CAS  Google Scholar 

  • Buresh CT, Folk GE, Dickson EW, Thrift DL (2010) Comparing hypothermia in the human and the black bear (Ursus americanus). Biol Rhythm Res 41:247–257

    Article  Google Scholar 

  • Daan S, Barnes BM, Strijkstra AM (1991) Warming up for sleep?–Ground squirrels sleep during arousals from hibernation. Neurosci Lett 128:265–268

    Article  CAS  PubMed  Google Scholar 

  • Dausmann KH, Glos J, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  CAS  PubMed  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155

    Article  PubMed  Google Scholar 

  • Donahue SW, Mcgee ME, Harvey KB, Vaughan MR, Robbins CT (2006) Hibernating bears as a model for preventing disuse osteoporosis. J Biomech 39:1480–1488

    Article  PubMed  Google Scholar 

  • Fedorov VV, Glukhov AV, Sudharshan S, Egorov Y, Rosenshtraukh LV, Efimov IR (2008) Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter hibernating versus nonhibernating mammals. Heart Rhythm 5:1587–1596

    Article  PubMed Central  PubMed  Google Scholar 

  • Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Gracey AY, Chang C, Qin S, Pertea G, Quackenbush J, Showe LC, Showe MK, Boyer BB, Barnes BM (2009) Elevated expression of protein biosynthesis genes in liver and muscle of hibernating black bears (Ursus americanus). Physiol Genomics 37:108–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Chang C, Wang H, Yan J, Showe LC, Showe MK, Barnes BM (2011) Modulation of gene expression in heart and liver of hibernating black bears (Ursus americanus). BMC Genomics 2:171 (1–15)

  • Fedorov VB, Goropashnaya AV, Tøien Ø, Stewart NC, Chang C, Wang H, Yan J, Showe LC, Showe MK, Donahue SW, Barnes BM (2012) Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes. Funct Integr Genomics 12:357–365

    Article  CAS  PubMed  Google Scholar 

  • Florant GL, Heller HC (1977) CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). Am J Physiol 232:R203–R208

    CAS  PubMed  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Ann Rev Physiol 66:239–274

    Article  CAS  Google Scholar 

  • Geiser F (2013) Hibernation. Curr Biol 23:R188–R193

    Article  CAS  PubMed  Google Scholar 

  • Haldane JS (1912) Methods of air analysis. Griffin, London

    Google Scholar 

  • Harlow HJ, Lohuis T, Beck TDI, Iaizzo PA (2001) Muscle strength in overwintering bears. Nature 409:997

    Article  CAS  PubMed  Google Scholar 

  • Harlow HJ, Lohuis T, Anderson-Sprecher RC, Beck TDI (2004) Body surface temperature in black bears may be related to periodic muscle activity. J Mamm 85:414–419

    Article  Google Scholar 

  • Hissa R (1997) Physiology of the European brown bear (Ursus arctos arctos). Ann Zool Fenn 34:267–287

    Google Scholar 

  • Hissa R, Siekkinen J, Hohtola E, Saarela S, Hakala A, Pudas J (1994) Seasonal patterns in the physiology of the European brown bear (Ursus arctos arctos) in Finland. Comp Biochem Physiol A Physiol 109:781–791

    Article  CAS  PubMed  Google Scholar 

  • Larkin JE, Heller HC (1998) The disappearing slow wave activity of hibernators. Sleep Research Online 1:96–101

    CAS  PubMed  Google Scholar 

  • Lee TL, Barnes BM, Buck CL (2009) Body temperature patterns during hibernation in a free-living Alaska marmot (Marmota broweri). Etho Ecol Evolution 21:403–413

    Article  Google Scholar 

  • Luft UC, Myhre LG, Loeppky JA (1973) Validity of Haldane calculation for estimating respiratory gas exchange. J Appl Physiol 34:864–865

    CAS  PubMed  Google Scholar 

  • McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A 151:5–28

    Article  Google Scholar 

  • Mercer JB, Simon E (1984) A comparison between total body thermosensitivity and local thermosensitivity in mammals and birds. Pflügers Arch 400:228–234

    Article  CAS  PubMed  Google Scholar 

  • Morrison PR (1960) Some interrelations between weight and hibernation function. Bull Mus Comp Zool 124:75–91

    Google Scholar 

  • Nelson RA, Jones JD, Wahner HW, Mcgill DB, Code CF (1975) Nitrogen metabolism in bears: urea metabolism in summer starvation and in winter sleep and role of urinary bladder in water and nitrogen conservation. Mayo Clin Proc 50:141–146

    CAS  PubMed  Google Scholar 

  • Robbins CT, Lopez-Alfaro C, Rode KD, Tøien Ø, Nelson OL (2012) Hibernation and seasonal fasting in bears: the energetic costs and consequences for polar bears. J Mammal 93:1493–1503

    Article  Google Scholar 

  • Schmid B, Helfrich-Forster C, Yoshii T (2011) A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J Biol Rhythms 26:464–467

    Article  PubMed  Google Scholar 

  • Scholander PF, Hock R, Walters V, Johnson F, Irving L (1950) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:237–258

    Article  CAS  PubMed  Google Scholar 

  • Sheriff MJ, Kenagy GJ, Richter M, Lee T, Tøien Ø, Kohl F, Buck CL, Barnes BM (2011) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc R Soc B 278:2369–2375

    Article  PubMed Central  PubMed  Google Scholar 

  • Shimozuru M, Iibuchi R, Yoshimoto T, Nagashima A, Tanaka J, Tsubota T (2013) Pregnancy during hibernation in Japanese black bears: effects on body temperature and blood biochemical profiles. J Mammal 94:618–627

    Article  Google Scholar 

  • Sokolove PG, Bushell WN (1978) The Chi square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 72:131–160

    Article  CAS  PubMed  Google Scholar 

  • Srere HK, Wang LC, Martin SL (1992) Central role for differential gene expression in mammalian hibernation. Proc Natl Acad Sci U. S. A 89:7119–7123

    Article  CAS  Google Scholar 

  • Strijkstra AM, Daan S (1998) Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator. Am J Physiol. 275:R1110–R1117

    CAS  PubMed  Google Scholar 

  • Tinker DB, Harlow HJ, Beck TD (1998) Protein use and muscle-fiber changes in free-ranging, hibernating black bears. Physiol Zool 71:414–424

    Article  CAS  PubMed  Google Scholar 

  • Tøien Ø (2013) Automated open flow respirometry in continuous and long-term measurements: design and principles. J Appl Physiol 114:1094–1107

    Article  PubMed  Google Scholar 

  • Tøien Ø, Mercer JB (1995) Poly I:C-induced fever elevates threshold for shivering but reduces thermosensitivity in rabbits. Am J Physiol 268:R1266–R1272

    PubMed  Google Scholar 

  • Tøien Ø, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  PubMed  Google Scholar 

  • Trachsel L, Edgar DM, Heller HC (1991) Are ground squirrels sleep deprived during hibernation? Am J Physiol 260:R1123–R1129

    CAS  PubMed  Google Scholar 

  • Twente JW, Twente JA (1965) Effects of core temperature upon duration of hibernation of Citellus lateralis. J Appl Physiol 20:411–416

    CAS  PubMed  Google Scholar 

  • Van DHP, Ruf T, Olofsen E, Vanhartevelt JH, Kruyt EW (2001) Analysis of problematic time series with the Lomb-Scargle Method, a reply to ‘emphasizing difficulties in the detection of rhythms with Lomb-Scargle periodograms’. Biol Rhythm Re. 32:347–354

    Article  Google Scholar 

  • Vybíral S, Székely M, Janský L, Cerný L (1987) Thermoregulation of the rabbit during the late phase of endotoxin fever. Pflügers Arch 410:220–222

    Article  PubMed  Google Scholar 

  • Wagner JA, Horwath SM, Dahms TE, Reed S (1973) Validation of open-circuit method for the determination of oxygen consumption. J Appl Physiol 34:859–863

    CAS  PubMed  Google Scholar 

  • Ware JV, Nelson OL, Robbins CT, Jansen HT (2012) Temporal organization of activity in the brown bear (Ursus arctos): roles of circadian rhythms, light, and food entrainment. Am J Physiol 303:R890–R902

    CAS  Google Scholar 

  • Watts PD (1989) Whole body thermal conductance of denning ursids. J Therm Biol 14:67–70

    Article  Google Scholar 

  • Williams CT, Barnes BM, Richter M, Buck CL (2012) Hibernation and circadian rhythms of body temperature in free-living Arctic ground squirrels. Physiol Biochem Zool 85:397–404

    Article  PubMed  Google Scholar 

  • Winfree AT (1994) Electrical turbulence in three-dimensional heart muscle. Science 266:1003–1006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Alaska Department of Fish and Game for providing bears. This work was supported by U.S. Army Medical Research and Materiel command awards W81XWH-06-1-0121 and W81XWH-09-2-0134 and NSF award number: IOS1147232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Øivind Tøien.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tøien, Ø., Blake, J. & Barnes, B.M. Thermoregulation and energetics in hibernating black bears: metabolic rate and the mystery of multi-day body temperature cycles. J Comp Physiol B 185, 447–461 (2015). https://doi.org/10.1007/s00360-015-0891-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-015-0891-y

Keywords

Navigation