Skip to main content
Log in

Modulation of aquaporin 2 expression in the kidney of young goats by changes in nitrogen intake

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In ruminants, a decrease of dietary nitrogen (N) is an appropriate feeding concept to reduce environmental pollution and costs. In our previous study, when goats were kept on an N-reduced diet, a decrease of plasma urea concentration and an increase of renal urea transporters were demonstrated. Renal urea absorption plays a crucial role for renal water absorption and urine concentration. Renal collecting duct water absorption is mainly mediated by the water channel aquaporin 1 and 2 (AQP1 and AQP2). Therefore, the aim of the present study was to investigate the effects of a dietary N reduction on expression of renal AQP1 and AQP2 in young goats. Twenty male White Saanen goats, 3 months old, were divided equally into two feeding groups, receiving either a diet with an adequate or a reduced-N supply. Goats fed a reduced-N diet showed significantly higher amounts of AQP1 mRNA in cortical tissue, and the expression of AQP2 mRNA and protein were highly elevated in renal outer medulla. An increase of vasopressin concentrations in plasma were detected for the N-reduced fed goats. Therefore, a stimulation of renal water absorption can be assumed. This might be an advantage for ruminants in times of N reduction due to higher urea concentrations in the tubular fluid and which might result in higher absorption of urea by renal urea transporters. Therefore, interplay of aquaporin water channels and urea transporters in the kidney may occur to maintain urea metabolism in times of N scarcity in young goats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

AVP:

Vasopressin

BBM:

Brush-border membrane

CaR:

Calcium-sensing receptor

CP:

Crude protein

UT:

Urea transporter

References

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol 265:F461

    PubMed  CAS  Google Scholar 

  • Altunbas K, Cevik-Demirkan A, Ozden-Akkaya O, Akosman MS (2013) Renal expression and functions of aquaporin 1 and aquaporin 4 in cattle. Biotech Histochem 88:350–355

    Article  PubMed  CAS  Google Scholar 

  • Artagaveytia N, Elalouf JM, de Rouffignac C, Boivin R, Cirio A (2005) Expression of urea transporter (UT-A) mRNA in papilla and pelvic epithelium of kidney in normal and low protein fed sheep. Comp Biochem Physiol B Biochem Mol Biol 140:279–285

    Article  PubMed  Google Scholar 

  • Bankir L (2001) Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res 51:372–390

    Article  PubMed  CAS  Google Scholar 

  • Benabe JE, Fernandez-Repollet E, Tapia E, Luo C, Martinez-Maldonado M (1993) Angiotensin II and catecholamines interaction in short-term low protein feeding. Kidney Int 44:285–293

    Article  PubMed  CAS  Google Scholar 

  • Bouley R, Hasler U, Lu HA, Nunes P, Brown D (2008) Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol 28:266–278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bouley R, Palomino Z, Tang SS, Nunes P, Kobori H, Lu HA, Shum WW, Sabolic I, Brown D, Ingelfinger JR, Jung FF (2009) Angiotensin II and hypertonicity modulate proximal tubular aquaporin 1 expression. Am J Physiol Renal Physiol 297:F1575–F1586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brown AJ, Zhong M, Finch J, Ritter C, McCracken R, Morrissey J, Slatopolsky E (1996) Rat calcium-sensing receptor is regulated by vitamin D but not by calcium. Am J Physiol 270:F454–F460

    PubMed  CAS  Google Scholar 

  • Bustamante M, Hasler U, Leroy V, de Seigneux S, Dimitrov M, Mordasini D, Rousselot M, Martin PY, Feraille E (2008) Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism. J Am Soc Nephrol 19:109–116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Butkus A, Alcorn D, Earnest L, Moritz K, Giles M, Wintour EM (1997) Expression of aquaporin-1 (AQP1) in the adult and developing sheep kidney. Biol Cell 89:313–320

    Article  PubMed  CAS  Google Scholar 

  • Butkus A, Earnest L, Jeyaseelan K, Moritz K, Johnston H, Tenis N, Wintour EM (1999) Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr Nephrol 13:379–390

    Article  PubMed  CAS  Google Scholar 

  • Chou CL, Knepper MA (1989) Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 257:F359–F365

    PubMed  CAS  Google Scholar 

  • Epstein FH, Kleeman CR, Pursel S, Hendrikx A (1957) The effect of feeding protein and urea on the renal concentrating process. J Clin Invest 36:635–641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ergene N, Pickering EC (1978) The effects of reducing dietary nitrogen and of increasing sodium chloride intake on urea excretion and reabsorption and on urine osmolality in sheep. Q J Exp Physiol Cogn Med Sci 63:67–76

    PubMed  CAS  Google Scholar 

  • Eriksson L, Valtonen M (1982) Renal urea handling in goats fed high and low protein diets. J Dairy Sci 65:385–389

    Article  PubMed  CAS  Google Scholar 

  • Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ, Smith CP (2002) Characterization of mouse urea transporters UT-A1 and UT-A2. Am J Physiol Renal Physiol 283:F817–F825

    Article  PubMed  CAS  Google Scholar 

  • Frindt G, Burg MB (1972) Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int 1:224–231

    Article  PubMed  CAS  Google Scholar 

  • Fushimi K, Sasaki S, Yamamoto T, Hayashi M, Furukawa T, Uchida S, Kuwahara M, Ishibashi K, Kawasaki M, Kihara I et al (1994) Functional characterization and cell immunolocalization of AQP-CD water channel in kidney collecting duct. Am J Physiol 267:F573–F582

    PubMed  CAS  Google Scholar 

  • Goldstein MH, Lenz PR, Levitt MF (1969) Effect of urine flow rate on urea reabsorption in man: urea as a “tubular marker”. J Appl Physiol 26:594–599

    PubMed  CAS  Google Scholar 

  • Hasler U, Leroy V, Jeon US, Bouley R, Dimitrov M, Kim JA, Brown D, Kwon HM, Martin PY, Feraille E (2008a) NF-kappaB modulates aquaporin-2 transcription in renal collecting duct principal cells. J Biol Chem 283:28095–28105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hasler U, Nunes P, Bouley R, Lu HA, Matsuzaki T, Brown D (2008b) Acute hypertonicity alters aquaporin-2 trafficking and induces a MAPK-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem 283:26643–26661

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hayashi M, Sasaki S, Tsuganezawa H, Monkawa T, Kitajima W, Konishi K, Fushimi K, Marumo F, Saruta T (1994) Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest 94:1778–1783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hendrikx A, Epstein FH (1958) Effect of feeding protein and urea on renal concentrating ability in the rat. Am J Physiol 195:539–542

    PubMed  CAS  Google Scholar 

  • Hirschberg R, Kopple JD (1989) Effects of growth hormone and IGF-I on renal function. Kidney Int Suppl 27:S20–S26

    PubMed  CAS  Google Scholar 

  • Huber K, Walter C, Schroder B, Breves G (2002) Phosphate transport in the duodenum and jejunum of goats and its adaptation by dietary phosphate and calcium. Am J Physiol Regul Integr Comp Physiol 283:R296–R302

    PubMed  CAS  Google Scholar 

  • Inman SR, Stowe NT, Nally JV Jr, Brouhard BH, Vidt DG (1995) Dietary protein does not alter intrinsic reactivity of renal microcirculation to angiotensin II in rodents. Am J Physiol 268:F302–F308

    PubMed  CAS  Google Scholar 

  • Isozaki T, Verlander JW, Sands JM (1993) Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J Clin Invest 92:2448–2457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Levinsky NG, Berliner RW (1959) The role of urea in the urine concentrating mechanism. J Clin Invest 38:741–748

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Muscher A, Huber K (2010) Effects of a reduced nitrogen diet on calcitriol levels and calcium metabolism in growing goats. J Steroid Biochem Mol Biol 121:304–307

    Article  PubMed  CAS  Google Scholar 

  • Muscher A, Hattendorf J, Pfeffer E, Breves G, Huber K (2008) Hormonal regulation of phosphate homeostasis in goats during transition to rumination. J Comp Physiol B 178:585–596

    Article  PubMed  CAS  Google Scholar 

  • Muscher AS, Schroder B, Breves G, Huber K (2010) Dietary nitrogen reduction enhances urea transport across goat rumen epithelium. J Anim Sci 88:3390–3398

    Article  PubMed  CAS  Google Scholar 

  • Muscher AS, Piechotta M, Breves G, Huber K (2011) Modulation of electrolyte homeostasis by dietary nitrogen intake in growing goats. Br J Nutr 105:1619–1626

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA 90:11663–11667

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  • NRC (1981) Nutrient requirements of goats. Nutrient requirements of domestic animals no 15. National Academies Press, Washington DC

    Google Scholar 

  • Patil RV, Han Z, Wax MB (1997) Regulation of water channel activity of aquaporin 1 by arginine vasopressin and atrial natriuretic peptide. Biochem Biophys Res Commun 238:392–396

    Article  PubMed  CAS  Google Scholar 

  • Pennell JP, Sanjana V, Frey NR, Jamison RL (1975) The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J Clin Invest 55:399–409

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rabinowitz L, Gunther RA, Shoji ES, Freedland RA, Avery EH (1973) Effects of high and low protein diets on sheep renal function and metabolism. Kidney Int 4:188–207

    Article  PubMed  CAS  Google Scholar 

  • Riccardi D, Brown EM (2010) Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 298:F485–F499

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rogers KV, Dunn CK, Conklin RL, Hadfield S, Petty BA, Brown EM, Hebert SC, Nemeth EF, Fox J (1995) Calcium receptor messenger ribonucleic acid levels in the parathyroid glands and kidney of vitamin D-deficient rats are not regulated by plasma calcium or 1,25-dihydroxyvitamin D3. Endocrinology 136:499–504

    PubMed  CAS  Google Scholar 

  • Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253:F823–F832

    PubMed  CAS  Google Scholar 

  • Sands JM, Naruse M, Jacobs JD, Wilcox JN, Klein JD (1996) Changes in aquaporin-2 protein contribute to the urine concentrating defect in rats fed a low-protein diet. J Clin Invest 97:2807–2814

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shannon JA (1936) Glomerular filtration and urea excretion in relation to urine flow in the dog. Am J Physiol 117:206–225

    CAS  Google Scholar 

  • Silanikove N (1984) Renal excretion of urea in response to changes in nitrogen intake in desert (black Bedouin) and non-desert (Swiss Saanen) goats. Comp Biochem Physiol A Comp Physiol 79:651–654

    Article  PubMed  CAS  Google Scholar 

  • Starke S, Muscher AS, Hirschhausen N, Pfeffer E, Breves G, Huber K (2012) Expression of urea transporters is affected by dietary nitrogen restriction in goat kidney. J Anim Sci 90:3889–3897

    Article  PubMed  CAS  Google Scholar 

  • Starke S, Cox C, Südekum K-H, Huber K (2013) Adaptation of electrolyte handling to low crude protein intake in growing goats and consequences for in vivo electrolyte excretion. Small Rumin Res 114:90–96

    Article  Google Scholar 

  • Terris J, Ecelbarger CA, Nielsen S, Knepper MA (1996) Long-term regulation of four renal aquaporins in rats. Am J Physiol 271:F414–F422

    PubMed  CAS  Google Scholar 

  • Wilkens MR, Kunert-Keil C, Brinkmeier H, Schroder B (2009) Expression of calcium channel TRPV6 in ovine epithelial tissue. Vet J 182:294–300

    Article  PubMed  CAS  Google Scholar 

  • Wintour EM, Earnest L, Alcorn D, Butkus A, Shandley L, Jeyaseelan K (1998) Ovine AQP1: cDNA cloning, ontogeny, and control of renal gene expression. Pediatr Nephrol 12:545–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Karin Hustedt for her excellent technical assistance during the Northern Blot analyses. We would also like to thank JProf. Dr. M. Piechotta (Clinic for Cattle, University of Veterinary Medicine Hannover, Germany) for performing the assay of AVP in plasma and Francis Sherwood-Brock for critical review of the manuscript. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra S. Muscher-Banse.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfers, K., Breves, G. & Muscher-Banse, A.S. Modulation of aquaporin 2 expression in the kidney of young goats by changes in nitrogen intake. J Comp Physiol B 184, 929–936 (2014). https://doi.org/10.1007/s00360-014-0849-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0849-5

Keywords

Navigation