Skip to main content
Log in

Dynamics of acid–base metabolic compensation and hematological regulation interactions in response to CO2 challenges in embryos of the chicken (Gallus gallus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

CO2 exposure elicits multiple changes in the acid–base balance and hematology of avian embryos, but the time-specific, dose-dependent effects of graded increases in extrinsic CO2 in a normoxic environment are poorly understood. Consequently, we exposed day 15 chicken embryos to 1, 3, 5, 6 or 10 % CO2 in 20 % O2. We hypothesized that both the magnitude of hypercapnic respiratory acidosis and the resultant metabolic compensation within 24 h of exposure to <10 % CO2 are proportional to ambient CO2 concentration ([CO2]). We also predicted that regulation of hematological respiratory variables is graded according to [CO2]. Time-course (2, 6 and 24 h) changes were determined for acid–base disturbances and hematological respiratory variables; hematocrit (Hct), red blood cell concentration ([RBC]), hemoglobin concentration, mean corpuscular volume (MCV) and other mean corpuscular indices. Both the decrease in uncompensated pH, which indicates uncompensated respiratory acidosis, and the compensatory pH increase, a sign of metabolic compensation, increased with [CO2]. The partial metabolic compensation across all CO2 gas mixtures was ~17, 46 and 53 % compensation at 2, 6 and 24 h, respectively. Hematological responses were nearly identical across the entire range of [CO2], with Hct decreasing across the time course of CO2 exposure due to a decrease in MCV from 2 to 24 h and a decrease in [RBC] at 24 h. Even though hematological regulation was not graded, chicken embryos were able to compensate and survive exposure to <10 % CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Hct:

Hematocrit

[RBC]:

Red blood cell concentration

MCV:

Mean corpuscular volume

[Hb]:

Hemoglobin concentration

MCH:

Mean corpuscular hemoglobin

[MCHb]:

Mean corpuscular hemoglobin concentration

[CO2]:

Carbon dioxide concentration

[O2]:

Oxygen concentration

PaCO2 :

Arterialized blood carbon dioxide partial pressure

pHa :

Arterialized blood pH

[HCO3 ]a :

Arterialized blood bicarbonate concentration

Osm:

Blood osmolality

ΔpH:

Change in pH

Δ[HCO3 ]:

Change in blood bicarbonate concentration

ΔHct:

Percent change in hematocrit

Δ[RBC]:

Percent change in red blood cell concentration

ΔMCV:

Percent change in mean corpuscular volume

References

  • Andrewartha SJ, Tazawa H, Burggren WW (2011) Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): in vivo and in vitro regulation. Respir Physiol Neurobiol 179:142–150

    Article  PubMed  Google Scholar 

  • Bissonnette JM, Metcalfe J (1978) Gas exchange of the fertile hen’s egg: components of resistance. Respir Physiol 34:209–218

    Article  CAS  PubMed  Google Scholar 

  • Boggs DF, Birchard GF, Kilgore DL Jr (1983) Blood characteristics, tracheal volume and heart mass of burrowing owls (Athene cunicularia) and bobwhite (Colinus virginianus). Comp Biochem Physiol 74A:693–696

    Article  CAS  Google Scholar 

  • Bruggeman V, Witters A, De Smit L, Debonne M, Everaert N, Kamer B, Onagbesan OM, Degraeve P, Decuypere E (2007) Acid–base balance in chicken embryos (Gallus domesticus) incubated under high CO2 concentrations during the first 10 days of incubation. Respir Physiol Neurobiol 159:147–154

    Article  CAS  PubMed  Google Scholar 

  • Burggren WW, Andrewartha SJ, Tazawa H (2012) Interactions of acid–base balance and hematocrit regulation during environmental respiratory gas challenges in developing chicken embryos (Gallus gallus). Respir Physiol Neurobiol 183:135–148

    Article  CAS  PubMed  Google Scholar 

  • Dawes CM, Simkiss K (1971) The effects of respiratory acidosis in the chick embryo. J Exp Biol 55:77–84

    CAS  PubMed  Google Scholar 

  • Everaert N, De Smit L, Debonne M, Witters A, Kamers B, Decuypere E, Bruggeman V (2008) Changes in acid–base balance and related physiological responses as a result of external hypercapnia during the second half of incubation in the chicken embryo. Poult Sci 87:362–367

    Article  CAS  PubMed  Google Scholar 

  • Everaert N, Willemsen H, Kamers B, Decuypere E, Bruggeman V (2011a) Regulatory capacities of a broiler and layer strain exposed to high CO2 levels during the second half of incubation. Comp Biochem Physiol A 158:215–220

    Article  Google Scholar 

  • Everaert N, Willemsen H, Willlems E, Franssens L, Decuypere E (2011b) Acid–base regulation during embryonic development in amniotes, with particular reference to birds. Respir Physiol Neurobiol 178:118–128

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Tazawa H, Burggren WW (2013) Dynamics of metabolic compensation and hematological changes in chicken (Gallus gallus) embryos exposed to hypercapnia with varying oxygen. Respir Physiol Neurobiol 185:272–280

    Article  CAS  PubMed  Google Scholar 

  • Mueller CA, Burggren WW, Tazawa (2014) The physiology of the avian embryo. In: Scanes CG (ed) Sturkie’s Avian physiology, 6th edn. Elsevier, San Diego (In press)

    Google Scholar 

  • Piiper J, Tazawa H, Ar A, Rahn H (1980) Analysis of chorioallantoic gas exchange in the chick embryo. Respir Physiol 39:273–284

    Article  CAS  PubMed  Google Scholar 

  • Severinghaus JW, Stupfel M, Bradley AF (1956a) Accuracy of blood pH and PCO2 determination. J Appl Physiol 9:189–196

    CAS  PubMed  Google Scholar 

  • Severinghaus JW, Stupfel M, Bradley AF (1956b) Variations of serum carbonic acid pK’ with pH and temperature. J Appl Physiol 9:197–200

    CAS  PubMed  Google Scholar 

  • Tazawa H (1980) Oxygen and CO2 exchange and acid–base regulation in the avian embryo. Amer Zool 20:395–404

    Google Scholar 

  • Tazawa H (1981a) Compensation of diffusive respiratory disturbances of the acid–base balance in the chick embryo. Comp Biochem Physiol 69A:333–336

    CAS  Google Scholar 

  • Tazawa H (1981b) Effect of O2 and CO2 in N2, He, and SF6 on chick embryo blood pressure and heart rate. J Appl Physiol Respir Environ Exerc Physiol 51:1017–1022

    CAS  PubMed  Google Scholar 

  • Tazawa H (1982) Regulatory processes of metabolic and respiratory acid–base disturbances in embryos. J Appl Physiol Respir Environ Exerc Physiol 53:1449–1454

    CAS  PubMed  Google Scholar 

  • Tazawa H (1986) Acid–base equilibrium in birds and eggs. In: Heisler N (ed) Acid–base regulation in animals. Elsevier, Amsterdam, pp 203–233

    Google Scholar 

  • Tazawa H, Mikami T, Yoshimoto C (1971) Effect of reducing the shell area on the respiratory properties of chicken embryonic blood. Respir Physiol 13:352–360

    Article  CAS  PubMed  Google Scholar 

  • Tazawa H, Piiper J, Ar A, Rahn H (1981) Changes in acid–base balance of chick embryos exposed to a He or SF6 atmosphere. J Appl Physiol Respir Environ Exerc Physiol 50:819–823

    CAS  PubMed  Google Scholar 

  • Tazawa H, Visschedijk AHJ, Piiper J (1983) Blood gases and acid–base status in chicken embryos with naturally varying egg shell conductance. Respir Physiol 54:137–144

    Article  CAS  PubMed  Google Scholar 

  • Tazawa H, Andrewartha SJ, Burggren WW (2011) Development of hematological respiratory variables in late chicken embryos: the relative importance of incubation time and embryo mass. Comp Biochem Physiol A 159:225–233

    Article  Google Scholar 

  • Tazawa H, Andrewartha SJ, Burggren WW (2012) Acute regulation of hematocrit and blood acid–base balance during severe hypoxic challenges in late chicken embryos (Gallus gallus). Respir Physiol Neurobiol 184:86–96

    Article  PubMed  Google Scholar 

  • Visschedijk AHJ, Tazawa H, Piiper J (1985) Variability of shell conductance and gas exchange of chicken eggs. Respir Physiol 59:339–345

    Article  CAS  PubMed  Google Scholar 

  • White FN, Bartholomew GA, Kinney JL (1978) Physiological and ecological correlates of tunnel nesting in the European bee-eater, Merops apiaster. Physiol Zool 51:140–154

    Google Scholar 

  • Wickler SJ, Marsh RL (1981) Effects of nestling age and burrow depth on CO2 and O2 concentrations in the burrows of bank swallows (Riparia riparia). Physiol Zool 54:132–136

    Google Scholar 

Download references

Acknowledgments

Support for this study was provided by NSF operating Grant IOS-1025823 to Warren W. Burggren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Burggren.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, C., Tazawa, H. & Burggren, W. Dynamics of acid–base metabolic compensation and hematological regulation interactions in response to CO2 challenges in embryos of the chicken (Gallus gallus). J Comp Physiol B 184, 641–649 (2014). https://doi.org/10.1007/s00360-014-0822-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0822-3

Keywords

Navigation