Journal of Comparative Physiology B

, Volume 184, Issue 1, pp 5–21 | Cite as

Lizard thermal trait variation at multiple scales: a review

  • Susana Clusella-TrullasEmail author
  • Steven L. Chown


Thermal trait variation is of fundamental importance to forecasting the impacts of environmental change on lizard diversity. Here, we review the literature for patterns of variation in traits of upper and lower sub-lethal temperature limits, temperature preference and active body temperature in the field, in relation to space, time and phylogeny. Through time, we focus on the direction and magnitude of trait change within days, among seasons and as a consequence of acclimation. Across space, we examine altitudinal and latitudinal patterns, incorporating inter-specific analyses at regional and global scales. This synthesis highlights the consistency or lack thereof, of thermal trait responses, the relative magnitude of change among traits and several knowledge gaps identified in the relationships examined. We suggest that physiological information is becoming essential for forecasting environmental change sensitivity of lizards by providing estimates of plasticity and evolutionary scope.


Critical thermal limits Climate change Diel cycles Extremes Macrophysiology Phenotypic plasticity Preferred body temperature Rate of change 



We thank John S. Terblanche and four anonymous reviewers for helpful comments on the work. SCT was funded by the HOPE project grant from Stellenbosch University and by the National Research Foundation, South Africa.


  1. Adolph SC (1990) Influence of behavioral thermoregulation on microhabitat use by two Sceloporus lizards. Ecology 71:315–327Google Scholar
  2. Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat 142:273–295PubMedGoogle Scholar
  3. Andrews RM (1994) Activity and thermal biology of the sand-swimming skink Neoseps reynoldsi: diel and seasonal patterns. Copeia 1994:91–99Google Scholar
  4. Andrews RM (1998) Geographic variation in field body temperature of Sceloporus lizards. J Therm Biol 23:329–334Google Scholar
  5. Andrews RM (2008) Lizards in the slow lane: thermal biology of chameleons. J Therm Biol 33:57–61Google Scholar
  6. Andrews RM, Kenney BS (1990) Diel patterns of activity and of selected ambient temperature of the sand-swimming lizard Sphenops sepsoides (Reptilia: Scincidae). Isr J Zool 37:65–73Google Scholar
  7. Angilletta MJ (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, OxfordGoogle Scholar
  8. Angilletta MJ, Werner YL (1998) Australian geckos do not display diel variation in thermoregulatory behavior. Copeia 1998:736–742Google Scholar
  9. Angilletta MJ, Montgomery LG, Werner YL (1999) Temperature preference in geckos: diel variation in juvenile and adults. Herpetologica 55:212–222Google Scholar
  10. Angilletta MJ, Hill T, Robson MA (2002a) Is physiological performance optimized by thermoregulatory behavior? A case study of the eastern fence lizard, Sceloporus undulatus. J Therm Biol 27:199–204Google Scholar
  11. Angilletta MJ, Niewiarowski PH, Navas CA (2002b) The evolution of thermal physiology in ectotherms. J Therm Biol 27:249–268Google Scholar
  12. Angilletta MJ, Bennett AF, Guderley H, Navas CA, Seebacher F, Wilson RS (2006) Coadaptation: a unifying principle in evolutionary thermal biology. Physiol Biochem Zool 79:282–294PubMedGoogle Scholar
  13. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219Google Scholar
  14. Art GR, Claussen DL (1982) The rate of thermal acclimation in the lizard, Anolis carolinensis. Copeia 1982:189–192Google Scholar
  15. Ashton KG, Feldman CR (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163PubMedGoogle Scholar
  16. Autumn K, De Nardo DF (1995) Behavioral thermoregulation increases growth rate in a nocturnal lizard. J Herpetol 29:157–162Google Scholar
  17. Avery RA (1982) Field studies of body temperatures and thermoregulation. In: Gans C, Pough FH (eds) Biology of the Reptilia, vol 12. Academic Press, New York, pp 93–166Google Scholar
  18. Baez C, Cortes A (1990) Precisión de la termorregulación conductual del lagarto neotropical Tropidurus quadrivittatus (Lacertilia: Iguanidae). Rev Chil Hist Nat 63:203–209Google Scholar
  19. Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216Google Scholar
  20. Ballinger RE, Schrank GD (1970) Acclimation rate and variability of the critical thermal maximum in the lizard, Phrynosoma cornutum. Physiol Zool 43:19–22Google Scholar
  21. Ballinger RE, Hawker J, Sexton OJ (1969) The effect of photoperiod acclimation on the thermoregulation of the lizard, Sceloporus undulatus. J Exp Zool 171:43–48Google Scholar
  22. Bauwens D, Garland T Jr, Castilla AM, Van Damme R (1995) Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49:848–863Google Scholar
  23. Bauwens D, Hertz PE, Castilla AM (1996) Thermoregulation in a lacertid lizard: the relative contributions of distinct behavioural mechanisms. Ecology 77:1818–1830Google Scholar
  24. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377Google Scholar
  25. Bennett AF (1980) The thermal dependence of lizard behaviour. Anim Behav 26:455–462Google Scholar
  26. Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:714–745Google Scholar
  27. Blows MW, Hoffmann AA (2005) A reassessment of genetic limits to evolutionary change. Ecology 86:1371–1384Google Scholar
  28. Bogert CM (1949) Thermoregulation in reptiles, a factor in evolution. Evolution 3:195–211PubMedGoogle Scholar
  29. Brattstrom BH (1965) Body temperatures of reptiles. Am Midl Nat 73:376–422Google Scholar
  30. Brett JR (1956) Some principles in the thermal requirements of fishes. Q Rev Biol 31:75–87Google Scholar
  31. Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South African savannas: >50 years of data suggests CO2 as driver. Glob Chang Biol 18:675–684Google Scholar
  32. Burns TA (1970) Temperature of Yarrow’s spiny lizard Sceloporus jarrovi at high altitudes. Herpetologica 26:9–16Google Scholar
  33. Carothers J, Marquet P, Jaksic F (1998) Thermal ecology of a Liolaemus lizard assemblage along an Andean altitudinal gradient in Chile. Rev Chil Hist Nat 71:39–50Google Scholar
  34. Case TJ (1976) Seasonal aspects of thermoregulatory behavior in the chuckawalla, Sauromalus obesus. J Herpetol 10:85–95Google Scholar
  35. Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357PubMedCentralPubMedGoogle Scholar
  36. Chevin LM, Gallet R, Gumulkiewicz R, Holt RD, Fellous S (2012) Phenotypic plasticity in a changing environment: towards a predictive theory. Philos Trans R Soc B 368:20120089Google Scholar
  37. Chong G, Heatwole H, Firth BT (1973) Panting thresholds of lizards. II. Diel variation in the panting threshold of Amphibolurus muricatus. Comp Biochem Physiol 46A:827–829Google Scholar
  38. Chown SL (2010) Temporal biodiversity change in transformed landscapes: a southern African perspective. Philos Trans R Soc B 365:3729–3742Google Scholar
  39. Chown SL (2012) Trait-based approaches to conservation physiology: forecasting environmental change risks from the bottom up. Philos Trans R Soc B 367:1615–1627Google Scholar
  40. Chown SL, Gaston KJ (2000) Areas, cradles and museums: the latitudinal gradient in species richness. Trends Ecol Evol 15:311–315PubMedGoogle Scholar
  41. Chown SL, Terblanche JS (2007) Physiological diversity in insects: ecological and evolutionary contexts. Adv Insect Physiol 33:50–152Google Scholar
  42. Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol 2:e406PubMedCentralPubMedGoogle Scholar
  43. Chown SL, Gaston K, van Kleunen M, Clusella-Trullas S (2010a) Population responses within a landscape matrix: a macrophysiological approach to understanding climate change impacts. Evol Ecol 24:601–616Google Scholar
  44. Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ, Stenseth NC, Pertoldi C (2010b) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15Google Scholar
  45. Christian KA, Bedford GS (1995) Seasonal changes in thermoregulation by the frillneck lizard, Chlamydosaurus kingii, in tropical Australia. Ecology 76:124–132Google Scholar
  46. Christian K, Bedford G (1996) Thermoregulation by the spotted tree monitor, Varanus scalaris, in the seasonal tropics of Australia. J Therm Biol 21:67–73Google Scholar
  47. Christian KA, Weavers BW (1996) Thermoregulation of monitor lizards in Australia: an evaluation of methods in thermal biology. Ecol Monogr 66:139–157Google Scholar
  48. Christian K, Tracy CR, Porter WP (1983) Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology 64:463–468Google Scholar
  49. Christian KA, Bedford G, Green B, Schultz T, Newgrain K (1998) Energetics and water flux of the marbled velvet gecko (Oedura marmorata) in tropical and temperate habitats. Oecologia 116:336–342Google Scholar
  50. Christian K, Bedford G, Green B, Griffiths A, Newgrain K, Schultz T (1999) Physiological ecology of a tropical dragon, Lophognathus temporalis. Aust J Ecol 24:171–181Google Scholar
  51. Clark DR, Kroll JC (1974) Thermal ecology of Anoline lizards: temperate versus tropical strategies. Southwest Nat 19:9–19Google Scholar
  52. Claussen DL (1977) Thermal acclimation in ambystomatid salamanders. Comp Biochem Physiol 58:333–340Google Scholar
  53. Clements JF (2007) The clements checklist of the birds of the world, 6th edn. Cornell University Press, IthacaGoogle Scholar
  54. Clusella-Trullas S, Chown SL (2011) Comment on “Erosion of lizard diversity by climate change and altered thermal niches”. Science 332:537PubMedGoogle Scholar
  55. Clusella-Trullas S, van Wyk JH, Spotila JR (2007a) Thermal melanism in ectotherms. J Therm Biol 32:235–245Google Scholar
  56. Clusella-Trullas S, Terblanche JS, van Wyk JH, Spotila JR (2007b) Low repeatability of preferred body temperature in four species of cordylid lizards: temporal variation and implications for adaptive significance. Evol Ecol 21:63–79Google Scholar
  57. Clusella-Trullas S, van Wyk JH, Spotila JR (2009) Thermal benefits of melanism in cordylid lizards: a theoretical and field test. Ecology 90:2297–2312PubMedGoogle Scholar
  58. Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751PubMedGoogle Scholar
  59. Cogger HG (1974) Thermal relations of the Mallee dragon Amphibolurus fovdi (Lacertilia : Agamidae). Aust J Zool 22:319–339Google Scholar
  60. Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conserv Physiol 1(1). doi: 10.1093/conphys/cot001
  61. Cooper N, Freckleton RP, Jetz W (2011) Phylogenetic conservatism of environmental niches in mammals. Proc R Soc Lond B Biol Sci 278:2384–2391Google Scholar
  62. Cornell HV (2013) Is regional species diversity bounded or unbounded? Biol Rev 88:140–165PubMedGoogle Scholar
  63. Cortes A, Baez C, Rosenmann M, Pino C (1994) Body temperature, activity cycle and metabolic rate in a small nocturnal Chilean lizard, Garthia gaudichaudi (Sauria: Gekkonidae). Comp Biochem Physiol 109:967–973Google Scholar
  64. Cowgell J, Underwood H (1979) Behavioral thermoregulation in lizards: a circadian rhythm. J Exp Zool 210:189–194Google Scholar
  65. Cowles RB, Bogert CM (1944) A preliminary study of the thermal requirements of desert reptiles. Bull Am Mus Nat Hist 83:261–296Google Scholar
  66. Crozier L, Dwyer G (2006) Combining population-dynamic and ecophysiological models to predict climate induced insect range shifts. Am Nat 167:853–866PubMedGoogle Scholar
  67. Cruz FB, Belver L, Acosta JC, Villavicencio HJ, Blanco G, Cánovas MG (2009) Thermal biology of Phymaturus lizards: evolutionary constraints or lack of environmental variation? Zoology 112:425–432PubMedGoogle Scholar
  68. Dawson WR (1975) On the physiological significance of the preferred body temperatures of reptiles. In: Gates DM, Schmerl R (eds) Perspectives of biophysical ecology. Springer, New York, pp 443–473Google Scholar
  69. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58PubMedGoogle Scholar
  70. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672PubMedGoogle Scholar
  71. DeWitt CB (1967) Precision of thermoregulation and its relation to environmental factors in the desert iguana, Dipsosaurus dorsalis. Physiol Zool 40:49–66Google Scholar
  72. Díaz JA (1997) Ecological correlates of the thermal quality of an ectotherm’s habitat: a comparison between two temperate lizard populations. Funct Ecol 11:79–89Google Scholar
  73. Díaz JA, Cabezas-Díaz S (2004) Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct Ecol 18:867–875Google Scholar
  74. Díaz JA, Iraeta P, Monasterio C (2006) Seasonality provokes a shift of thermal preferences in a temperate lizard, but altitude does not. J Therm Biol 31:237–242Google Scholar
  75. Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–707PubMedGoogle Scholar
  76. Duarte H, Tejedo M, Katzenberger M, Marangoni F, Baldo D, Beltrán JF, Martí DA, Richter-Boix A, Gonzalez-Voyer A (2012) Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities. Glob Change Biol 18:412–421Google Scholar
  77. Ellis DJ, Firth BT, Belan I, Firthi BT (2006) Circadian rhythm of behavioral thermoregulation in the sleepy lizard (Tiliqua rugosa). Herpetologica 62:259–265Google Scholar
  78. Ellis DJ, Firth BT, Belan I (2008) Interseasonal variation in the circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa. J Comp Physiol A 194:701–712Google Scholar
  79. Ellison D, Futter MN, Bishop K (2012) On the forest cover-water yield debate: from demand- to supply-side thinking. Glob Chang Biol 18:806–820PubMedCentralGoogle Scholar
  80. Engbretson GA, Hutchison VH (1976) Parietalectomy and thermal selection in the lizard Sceloporus magister. J Exp Zool 198:29–38PubMedGoogle Scholar
  81. Firth BT, Belan I (1998) Daily and seasonal rhythms in selected body temperatures in the Australian lizard Tiliqua rugosa (Scincidae): field and laboratory observations. Physiol Zool 71:303–311PubMedGoogle Scholar
  82. Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500Google Scholar
  83. Gil MJ, Guerrero F, Perez-Mellado V (1994) Diel variation in preferred body temperatures of the Moorsih gecko Tarentola mauritanica during summer. Herpetol J 4:56–59Google Scholar
  84. Gilchrist GW (1995) Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270Google Scholar
  85. Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends Ecol Evol 28:135–142PubMedGoogle Scholar
  86. Glaw F, Köhler J, Townsend TM, Vences M (2012) Rivaling the world’s smallest reptiles: discovery of miniaturized and microendemic new species of leaf chameleons (Brookesia) from Northern Madagascar. PLoS ONE 7:e31314PubMedCentralPubMedGoogle Scholar
  87. Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob Ecol Biogeogr 19:755–768Google Scholar
  88. Gonzalez A, Ronce O, Ferriere, Hochberg ME (2012) Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos Trans R Soc B 368:20120404Google Scholar
  89. Grant BW, Dunham AE (1988) Thermally imposed time constraints on the activity of the desert lizard Sceloporus merriami. Ecology 69:167–176Google Scholar
  90. Grant BW, Dunham AE (1990) Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus merriami. Ecology 71:1765–1776Google Scholar
  91. Grigg JW, Buckley LB (2013) Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography. Biol Lett 9:20121056. doi: 10.1098/rsbl.2012.1056 PubMedGoogle Scholar
  92. Gundy GC, Ralph CL, Wurst GZ (1975) Parietal eyes in lizards: zoogeographical correlates. Science 190:671–673PubMedGoogle Scholar
  93. Gutierrez JA, Krenz JD, Ibargüengoytía NR (2010) Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J Therm Biol 35:332–337Google Scholar
  94. Gvoždík L (2011) Plasticity of preferred body temperatures as means of coping with climate change? Biol Lett 8:262–265PubMedCentralPubMedGoogle Scholar
  95. Gvoždík L, Castilla A (2001) A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J Herpetol 35:486–492Google Scholar
  96. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109:14726–14727Google Scholar
  97. Heath JE (1964) Reptilian thermoregulation: evaluation of field studies. Science 145:784–785Google Scholar
  98. Heatwole H (1970) Thermal ecology of the desert dragon Amphibolurus inermis. Ecol Monogr 40:425–457Google Scholar
  99. Heatwole H, Firth BT, Webb JW (1973) Panting thresholds of lizards I. Some methodological and internal influences on the panting threshold of an agamid, Amphibolurus muricatus. Comp Biochem Physiol 46A:799–826Google Scholar
  100. Hertz PE (1979) Sensitivity to high temperatures in three west Indian grass anoles (Sauria, Iguanidae), with a review of heat sensitivity in the genus Anolis. Comp Biochem Physiol 63A:217–222Google Scholar
  101. Hertz PE (1981) Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): field thermal biology and physiological ecology. J Zool 195:25–37Google Scholar
  102. Hertz PE (1992) Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology 73:1405–1417Google Scholar
  103. Hertz PE, Huey RB (1981) Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62:515–521Google Scholar
  104. Hertz PE, Nevo E (1981) Summer thermal biology of four agamid species in Israel. Isr J Zool 30:190–210Google Scholar
  105. Hertz PE, Arce-Hernandez A, Ramirez-Vazquez J, Tirado-Rivera W, Vazquez-Vives L (1979) Geographical variation of heat sensitivity and water loss rates in the tropical lizard, Anolis gundlachi. Comp Biochem Physiol 62A:947–953Google Scholar
  106. Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818PubMedGoogle Scholar
  107. Higgins SI, O’Hara RB, Bykova O, Cramer MD, Chuine I, Gerstner E-M, Hickler T, Morin X, Kearnery MR, Midgley GM, Scheiter S (2012) A physiological analogy of the niche for projecting the potential distribution of plants. J Biogeogr 39:2132–2145Google Scholar
  108. Hoffmann AA (2010) Physiological climatic limits in Drosophila: patterns and implications. J Exp Biol 213:870–880PubMedGoogle Scholar
  109. Hoffmann AA, Chown SL, Clusella-Trullas S (2013) Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct Ecol 27:934–949Google Scholar
  110. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485PubMedGoogle Scholar
  111. Huey RB (1982) Temperature, physiology, and the ecology of reptiles. In: Gans C, Pough FH (eds) Biology of the Reptilia, vol 12. Academic Press, London, pp 25–91Google Scholar
  112. Huey RB (1991) Physiological consequences of habitat selection. Am Nat 137:91–115Google Scholar
  113. Huey RB, Pianka ER (1977) Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 58:1066–1075Google Scholar
  114. Huey RB, Webster TP (1976) Thermal biology of Anolis lizards in a complex fauna: the Cristatellus group on Puerto Rico. Ecology 57:985–994Google Scholar
  115. Huey RB, Niewiarowski PH, Kaufmann J, Herron JC (1989) Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures? Physiol Zool 62:488–504Google Scholar
  116. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366PubMedGoogle Scholar
  117. Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Alvarez Pérez H, Garland T Jr (2009) Why tropical forest lizards are vulnerable to climate warming. Proc R Soc Lond B Biol Sci 276:1939–1948Google Scholar
  118. Huey RB, Kearney MR, Krockenberger A, Holtum JAM, Jess M, Williams SE (2012) Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos Trans R Soc B 367:1665–1679Google Scholar
  119. Hutchison VH, Kosh RJ (1974) Thermoregulatory function of the parietal eye in the lizard Anolis carolinensis. Oecologia 16:173–177Google Scholar
  120. Hutchison VH, Maness JD (1979) The role of behavior in temperature acclimation and tolerance in ectotherms. Am Zool 19:367–384Google Scholar
  121. Innocenti A, Minutini L, Foa A (1993) The pineal and circadian rhythms of temperature selection and locomotion in lizards. Physiol Behav 53:911–915PubMedGoogle Scholar
  122. Jankowski JE, Londoňo GA, Robinson SK, Chappell MA (2013) Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 36:1–12Google Scholar
  123. Jessop TS, Madsen T, Ciofi C, Imansyah J, Purwandana D, Rudiharto H, Arifiandy A, Phillips JA (2007) Island differences in population size structure and catch per unit effort and their conservation implications for Komodo dragons. Biol Conserv 135:247–255Google Scholar
  124. Jetz W, Fine P (2012) Area and productivity of the world’s biomes integrated over geological time predicts global patterns of vertebrate diversity. PLoS Biol 10:e1001292PubMedCentralPubMedGoogle Scholar
  125. Johnson CR (1972) Diel variation in the thermal tolerance of Litoria gracilenta (Anura: Hylidae). Comp Biochem Physiol 41A:727–730Google Scholar
  126. Johnson CR (1976) Diel variation in the thermal tolerance of Gambusia affinis affinis (Pisces: Poeciliidae). Comp Biochem Physiol 55A:337–340Google Scholar
  127. Kauffmann JS, Bennett AF (1989) The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol Zool 62:1047–1058Google Scholar
  128. Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc Natl Acad Sci USA 106:3835–3840PubMedGoogle Scholar
  129. Kearney MR, Simpson SJ, Raubenheimer D, Kooijman SALM (2013) Balancing heat, water and nutrients under environmental change: a thermodynamic niche framework. Funct Ecol 27:950–965Google Scholar
  130. Kellermann V, van Heerwaarden B, Sgrò CM, Hoffmann AA (2009) Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:1244–1246PubMedGoogle Scholar
  131. Kellermann V, Overgaard J, Hoffmann AA, Flojgaard C, Svenning JC, Loeschcke V (2012) Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc Natl Acad Sci USA 109:16228–16233PubMedGoogle Scholar
  132. Kelty JD, Lee RE (2001) Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles. J Exp Biol 204:1659–1666PubMedGoogle Scholar
  133. King RB, Lawson R (1995) Color-pattern variation in lake Erie snakes—the role of gene flow. Evolution 49:885–896Google Scholar
  134. Kingsolver JG, Huey RB (1998) Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am Zool 38:545–560Google Scholar
  135. Kosh RJ, Hutchison VH (1972) Thermal tolerances of parietalectomized Anolis carolinensis acclimatized at different temperatures and photoperiods. Herpetologica 28:183–191Google Scholar
  136. Labra A (1998) Selected body temperatures of seven species of Chilean Liolaemus lizards. Rev Chil Hist Nat 71:349–358Google Scholar
  137. Labra A, Pienaar J, Hansen T (2009) Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking. Am Nat 174:204–220PubMedGoogle Scholar
  138. Larson MW (1961) The critical thermal maximum of the lizard Sceloporus occidentalis occidentalis Baird and Girard. Herpetologica 17:113–122Google Scholar
  139. Lemos-Espinal JA, Ballinger RE (1995) Comparative thermal ecology of the high-altitude lizard Sceloporus grammicus. Can J Zool 73:2184–2191Google Scholar
  140. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189Google Scholar
  141. Levins R (1969) Thermal acclimation and heat resistance in Drosophila species. Am Nat 103:483–499Google Scholar
  142. Li H, Wang Z, Mei W, Ji X (2009) Temperature acclimation affects thermal preference and tolerance in three Eremias lizards (Lacertidae). Curr Zool 55:258–265Google Scholar
  143. Licht P (1968) Response of thermal preferendum and heat resistance to thermal acclimation under different photoperiods in the lizard Anolis carolinensis. Am Midl Nat 79:149–158Google Scholar
  144. Licht P, Dawson WR, Shoemaker VH, Main AR (1966) Observations on the thermal relations of western Australian lizards. Copeia 1966:97–111Google Scholar
  145. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055PubMedGoogle Scholar
  146. Lutterschmidt WI, Hutchison VH (1997) The critical thermal maximum: data support the onset of spasms as the definitive end point. Can J Zool 75:1553–1560Google Scholar
  147. Lutterschmidt WI, Reinert HK (2012) Modeling body temperature and thermal inertia of large-bodied reptiles: support for water-filled biophysical models in radiotelemetric studies. J Therm Biol 37:282–285Google Scholar
  148. Lutterschmidt D, Lutterschmidt W, Hutchison VH (2003) Melatonin and thermoregulation in ectothermic vertebrates: a review. Can J Zool 81:1–13Google Scholar
  149. Marquis O, Massot M, Le Galliard JF (2008) Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology 89:2575–2583PubMedGoogle Scholar
  150. Marshall DJ, Morgan SG (2011) Ecological and evolutionary consequences of linked life-history stages in the sea. Curr Biol 21:R718–R725PubMedGoogle Scholar
  151. Martin TL, Huey RB (2008) Why ‘suboptimal’ is optimal: Jensen’s inequality and ectotherm thermal preferences. Am Nat 171:102–118Google Scholar
  152. McGinnis SM (1966) Sceloporus occidentalis: preferred body temperature of the western fence lizard. Science 152:1090–1091PubMedGoogle Scholar
  153. McGuigan K, Blows MA (2010) Evolvability of individual traits in a multivariate context: partitioning the additive genetic variance into common and specific components. Evolution 64:1899–1911PubMedGoogle Scholar
  154. McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Comstock Publishing, New YorkGoogle Scholar
  155. Medina M, Gutierrez J, Scolaro A, Ibargüengoytía N (2009) Thermal responses to environmental constraints in two populations of the oviparous lizard Liolaemus bibronii in Patagonia, Argentina. J Therm Biol 34:32–40Google Scholar
  156. Meehl GA, Tebaldi C (2004) More intense, more frequent and longer lasting heat waves in the 21st century. Science 305:994–997PubMedGoogle Scholar
  157. Meiri S (2008) Evolution and ecology of lizard body sizes. Glob Ecol Biogeogr 17:724–734Google Scholar
  158. Meiri S (2010) Length-weight allometries in lizards. J Zool 281:218–226Google Scholar
  159. Middendorf GA, Simon CA (1988) Thermoregulation in the iguanid lizard Sceloporus jarrovi: the influences of age, time, and light condition on body temperature and thermoregulatory behaviors. Southwest Nat 33:347–356Google Scholar
  160. Mitchell WA, Angilletta MJ (2009) Thermal games: frequency-dependent models of thermal adaptation. Funct Ecol 23:510–520Google Scholar
  161. Navarro-García JC, García A, Mendez de la Cruz FR (2008) Estacionalidad, eficiencia termorreguladora de Aspidoscelis lineatissima (Sauria: Teiidae) y la calidad térmica del bosque tropical caducifolio en Chamela, Jalisco, México. Rev Mex Biodiv 79:413–419Google Scholar
  162. Nguyen KDT, Morley SA, Lai CH, Clark MS, Tan KS, Bates AE, Peck LS (2011) Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS One 6:e29340PubMedCentralPubMedGoogle Scholar
  163. Olsson M, Wapstra E, Schwartz T, Madsen T, Ujvari B (2011) In hot pursuit: fluctuating mating system and sexual selection in sand lizards. Evolution 65:574–583PubMedGoogle Scholar
  164. Patterson JW (1991) Emergence, basking behaviour, mean selected temperature and critical thermal minimum in high and low altitude subspecies of the tropical lizard Mabuya striata. Afr J Ecol 29:330–339Google Scholar
  165. Patterson JW, Davies PM (1978a) Preferred body temperature: seasonal and sexual differences in the lizard Lacerta vivipara. J Therm Biol 3:39–41Google Scholar
  166. Patterson JW, Davies PM (1978b) Thermal acclimation in temperate lizards. Nature 275:646–647PubMedGoogle Scholar
  167. Paulissen MA (1988) Ontogenetic comparison of body temperature selection and thermal tolerance of Cnemidophorus sexlineatus. J Herpetol 22:473–476Google Scholar
  168. Pianka ER (1971) Ecology of the agamid lizard Amphibolurus isolepis in Western Australia. Copeia 1971:527–536Google Scholar
  169. Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley, CAGoogle Scholar
  170. Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615Google Scholar
  171. Refinetti R, Susalka SJ (1997) Circadian rhythm of temperature selection in a nocturnal lizard. Physiol Behav 62:331–336PubMedGoogle Scholar
  172. Regal PJ (1966) Thermophilic response following feeding in certain reptiles. Copeia 1966:588–590Google Scholar
  173. Regal PJ (1967) Voluntary hypothermia in reptiles. Science 155:1551–1553PubMedGoogle Scholar
  174. Revell LJ, Mahler DL, Sweeney JR, Sobotka M, Fancher VE, Losos JB (2010) Nonlinear selection and the evolution of variances and covariances for continuous characters in an anole. J Evol Biol 23:407–421PubMedGoogle Scholar
  175. Richard J, Morley SA, Thorne MAS, Peck LS (2012) Estimating long-term survival temperatures at the assemblage level in the marine environment: towards macrophysiology. PLoS One 7:e34655PubMedCentralPubMedGoogle Scholar
  176. Rismiller PD, Heldmaier G (1982) The effect of photoperiod on temperature selection in the European green lizard. Oecologia 53:222–226Google Scholar
  177. Rismiller PD, Heldmaier G (1988) How photoperiod influences body temperature selection in Lacerta viridis. Oecologia 75:125–131Google Scholar
  178. Rock J, Cree A (2008) Extreme variation in body temperature in a nocturnal lizard. Herpetol J 18:69–76Google Scholar
  179. Rock J, Cree A, Andrews RM (2002) The effect of reproductive condition on thermoregulation in a viviparous gecko from a cool climate. J Therm Biol 27:17–27Google Scholar
  180. Ruibal R (1961) Thermal relations of five species of tropical lizards. Evolution 15:98–111Google Scholar
  181. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774PubMedGoogle Scholar
  182. Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429PubMedGoogle Scholar
  183. Seebacher F, Franklin CE (2012) Determining environmental causes of biological effects: the need for a mechanistic physiological dimension in conservation biology. Philos Trans R Soc B 367:1607–1614Google Scholar
  184. Sgrò C, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337PubMedCentralGoogle Scholar
  185. Sievert LM, Hutchison VH (1988) Light versus heat: thermoregulatory behaviour in a nocturnal lizard Gekko gecko. Herpetologica 44:266–273Google Scholar
  186. Sievert LM, Hutchison VH (1989) Influences of season, time of day, light and sex on the thermoregulatory behaviour of Crotaphytus collaris. J Therm Biol 14:159–165Google Scholar
  187. Sievert LM, Hutchison VH (1991) The influence of photoperiod and position of a light source on behavioral thermoregulation in Crotaphytus collaris (Squamata: Iguanidae). Copeia 1991:105–110Google Scholar
  188. Sievert LM, Paulissen MA (1996) Temperature selection and thermoregulatory precision of bisexual and parthenogenetic Cnemidophorus lizards from southern Texas, USA. J Therm Biol 21:15–20Google Scholar
  189. Sinervo B (1990) Evolution of thermal physiology and growth rate between populations of the western fence lizard (Sceloporus occidentalis). Oecologia 83:228–237PubMedGoogle Scholar
  190. Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderon-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW Jr (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899PubMedGoogle Scholar
  191. Skinner DC (1991) Effect of intraperitoneal melatonin injections on thermoregulation in the Transvaal girdled lizard, Cordylus vittifer. J Therm Biol 16:179–184Google Scholar
  192. Smith GR, Ballinger RE (1994) Thermal tolerance in the tree lizard (Urosaurus ornatus) from a desert population and a low montane population. Can J Zool 72:2066–2069Google Scholar
  193. Sorci G, Swallow JG, Garland T, Clobert J (1995) Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiol Zool 68:698–720Google Scholar
  194. Spellerberg IF (1972a) Thermal ecology of allopatric lizards (Sphenomorphus) in southeast Australia. I. The environment and lizard critical temperatures. Oecologia 9:371–383Google Scholar
  195. Spellerberg IF (1972b) Temperature tolerances of southeast Australian lizards examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia 9:23–46Google Scholar
  196. Spellerberg IF (1974) Influence of photoperiod and light intensity on lizards voluntary temperatures. Br J Herpetol 5:412–420Google Scholar
  197. Spellerberg IF, Hoffmann K (1972) Circadian rhythm in lizard critical thermal minimum temperature. Naturwissenschaften 59:517–518PubMedGoogle Scholar
  198. Spicer JI, Gaston KJ (1999) Physiological diversity and its ecological implications. Blackwell Science, OxfordGoogle Scholar
  199. Stevenson RD (1985) The relative importance of behavioral and physiological adjustments controlling body temperatures in terrestrial ectotherms. Am Nat 126:362–386Google Scholar
  200. Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, le Roux PC, Chown SL (2011) Ecologically relevant measures of tolerance to potentially lethal temperatures. J Exp Biol 214:3713–3725PubMedGoogle Scholar
  201. Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085–1088PubMedGoogle Scholar
  202. Tinkle DW, Dunham AE, Congdon JD (1993) Life history and demographic variation in the lizard Sceloporus graciosus: a long-term study. Ecology 74:2413–2429Google Scholar
  203. Tocher MD (1992) Paradoxical preferred body temperatures of two allopatric Hoplodactylus maculatus (Reptilia: Gekkonidae) populations from New Zealand. N Z Nat Sci 19:53–60Google Scholar
  204. Tosini G (1997) The pineal complex of reptiles: physiological and behavioural roles. Ethol Ecol Evol 9:313–333Google Scholar
  205. Tosini G, Menaker M (1996) The pineal complex and melatonin affect the expression of the daily rhythm of behavioral thermoregulation in the green iguana. J Comp Physiol A 179:135–142PubMedGoogle Scholar
  206. Tracy CR, Nussear KE, Esque TC, Dean-Bradley K, Tracy CR, DeFalco LA, Castle KT, Zimmerman LC, Espinoza RE, Barber AM (2006) The importance of physiological ecology in conservation biology. Integr Comp Biol 46:1191–1205PubMedGoogle Scholar
  207. Tsuji JS (1988) Thermal acclimation of metabolism in Sceloporus lizards from different latitudes. Physiol Zool 61:241–253Google Scholar
  208. Tsuji JS, Huey RB, van Berkum FH, Garland T Jr, Shaw RG (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates. Evol Ecol 3:240–252Google Scholar
  209. Underwood H (1992) Endogenous rhythms. In: Gans C, Crews D (eds) Biology of the Reptilia: hormones, brain and behavior, vol 18. University of Chicago Press, Chicago, pp 229–297Google Scholar
  210. Van Berkum FH (1988) Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am Nat 132:327–343Google Scholar
  211. Van Damme R, Bauwens D, Verheyen RF (1986) Selected body temperatures in the lizard Lacerta vivipara: variation within and between populations. J Therm Biol 11:219–222Google Scholar
  212. Van Damme R, Bauwens D, Verheyen RF (1987) Thermoregulatory responses to environmental seasonality by the lizard Lacerta vivipara. Herpetologica 43:405–415Google Scholar
  213. Van Damme R, Bauwens D, Castilla AM, Verheyen RF (1989) Altitudinal variation of the thermal biology and running performance in the lizards Podarcis tiliguerta. Oecologia 80:516–524Google Scholar
  214. Van Damme R, Bauwens D, Verheyen RF (1990) Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57:61–67Google Scholar
  215. Vickers M, Manicom C, Schwarzkopf L (2011) Extending the cost-benefit model of thermoregulation: high-temperature environments. Am Nat 177:452–461PubMedGoogle Scholar
  216. Vitt LJ, Caldwell JP (2009) Herpetology: an introductory biology of amphibians and reptiles, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  217. Vrcibradic D, Rocha CFD (1998) The ecology of the skink Mabuya frenata in an area of rock outcrops in Southeastern Brazil. J Herpetol 32:229–237Google Scholar
  218. Waltner R (1991) Altitudinal ecology of Agama tuberculata Gray in the western Himalayas. Univ Kansas Mus Nat Hist Misc Pub 83:1–74Google Scholar
  219. Weldon CW, Terblanche JS, Chown SL (2011) Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J Therm Biol 36:479–485Google Scholar
  220. Wheeler PE (1986) Thermal acclimation of metabolism and preferred body temperature in lizards. J Therm Biol 11:161–166Google Scholar
  221. Whitfield SM, Bell KE, Philippi T, Sasa M, Bolaños F, Chaves G, Savage JM II, Donnelly MA (2007) Amphibian and reptile declines over 35 years at La Selva, Costa Rica. Proc Natl Acad Sci USA 104:8352–8356PubMedGoogle Scholar
  222. Wilhoft DC, Anderson JD (1960) Effect of acclimation on the preferred body temperature of the lizard, Sceloporus occidentalis. Science 131:610–611PubMedGoogle Scholar
  223. Williams JW, Jackson ST (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482Google Scholar
  224. Wilms TM, Wagner P, Shobrak M, Rödder D, Böhme W (2011) Living on the edge? On the thermobiology and activity pattern of the large herbivorous desert lizard Uromastyx aegyptia microlepis Blanford, 1875 at Mahazat as-Sayd Protected Area, Saudi Arabia. J Arid Environ 75:636–647Google Scholar
  225. Wilson DE, Reeder DM (2005) Mammal species of the world. A taxonomic and geographic reference, 3rd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  226. Yang J, Sun YY, An H, Ji X (2008) Northern grass lizards (Takydromus septentrionalis) from different populations do not differ in thermal preference and thermal tolerance when acclimated under identical thermal conditions. J Comp Physiol B 178:343–349PubMedGoogle Scholar
  227. Zani PA (2008) Climate change trade-offs in the side-blotched lizard (Uta stansburiana): effects of growing season length and mild temperatures on winter survival. Physiol Zool 81:797–809Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa
  2. 2.School of Biological SciencesMonash UniversityMelbourneAustralia

Personalised recommendations