Journal of Comparative Physiology B

, Volume 183, Issue 7, pp 933–946 | Cite as

The breeding season duration hypothesis: acute handling stress and total plasma concentrations of corticosterone and androgens in male and female striped plateau lizards (Sceloporus virgatus)

Original Paper

Abstract

Acute glucocorticoid elevations can be adaptations to short-term stressors. The breeding season hypothesis predicts reduced glucocorticoid responsiveness to acute stressors in populations or species with short breeding seasons. The striped plateau lizard (Sceloporus virgatus) has a short breeding season in Arizona. We measured plasma corticosterone and total androgen levels (dihydrotestosterone and testosterone) following one of the four stress-handling treatments (0, 10, 60, or 180 min). In both sexes, longer handling stress yielded higher corticosterone; females had higher corticosterone than males at all time points. Androgens did not vary with handling duration, in either sex. Combining treatments, plasma androgens correlated positively with corticosterone (CORT) in females but not in males; plasma CORT and body mass residuals were negatively correlated in both sexes, suggesting lizards in poor body condition and/or not investing heavily in reproduction (follicle mass) have higher acute corticosterone. Total plasma androgens and body mass residuals were positively associated in males, but showed no association in females. The maximal CORT elevation after handling stress in this single-clutching species was of comparable magnitude to responses in related multi-clutching lizard species with longer breeding seasons. Using data from studies of multiple populations of three Sceloporus species, we found no relationship between the relative magnitude of the CORT increase and either latitude or elevation, two variables in the literature correlated with duration of the breeding season, and only weak relationships with geographic elevation and actual (not relative) stress-elevated CORT values in this multi-population comparison.

Keywords

Corticosterone Androgens Acute stress Reproductive state Body condition Lizards Sceloporus Latitude Elevation Breeding season duration 

References

  1. Abell AJ (1997) Estimating paternity with spatial behavior and DNA fingerprinting in the striped plateau lizard, Sceloporus virgatus (Phrynosomatidae). Behav Ecol Sociobiol 41:217–226. doi:10.1007/s002650050382 CrossRefGoogle Scholar
  2. Abell AJ (1998) Reproductive and post-reproductive hormone levels in the lizard Sceloporus virgatus. Acta Zool Mex 74:43–57Google Scholar
  3. Abell AJ (2000) Costs of reproduction in male lizards, Sceloporus virgatus. Oikos 88:630–640. doi:10.1034/j.1600-0706.2000.880320.x CrossRefGoogle Scholar
  4. Astheimer LB, Buttemer WA, Wingfield JC (2000) Corticosterone treatment has no effect on reproductive hormones or aggressive behavior in free-living male tree sparrows, Spizella arborea. Horm Behav 37:31–39. doi:10.1006/hbeh.1999.1555 PubMedCrossRefGoogle Scholar
  5. Boonstra R (2005) Equipped for life: the adaptive role of the stress axis in male mammals. J Mammal 86: 236–247. doi: 10.1644/BHE-001.1 Google Scholar
  6. Bracken MF (1978) The relation of rank to physiological state in Cnemidophorus sexlineatus dominance hierarchies. Herpetologica 34:185–191Google Scholar
  7. Breuner CW, Orchinik M, Hahn TP, Meddle SL, Moore IT, Owen-Ashley NT, Sperry TS, Wingfield JC (2003) Differential mechanisms for regulation of the stress response across latitudinal gradients. Am J Physiol Regul Integr Comp Physiol 285:R594–R600. doi:10.1152/ajpregu.00748.2002 PubMedGoogle Scholar
  8. Calisi RM, Hews DK (2007) Steroid correlates of multiple color traits in the spiny lizard, Sceloporus pyrocephalus. J Comp Physiol B 177:641–654. doi:10.1007/s00360-007-0162-7 PubMedCrossRefGoogle Scholar
  9. Comendant T, Sinervo B, Svensson EI, Wingfield J (2003) Social competition, corticosterone and survival in female lizard morphs. J Evol Biol 16:948–955. doi:10.1046/j.1420-9101.2003.00598.x PubMedCrossRefGoogle Scholar
  10. Cooper WE Jr, Crews D (1987) Hormonal induction of secondary sexual coloration and rejection behavior in female keeled earless lizards, Holbrookia propinqua. Anim Behav 35:1177–1187. doi:10.1016/S0003-3472(87)80174-4 CrossRefGoogle Scholar
  11. Cornelius JM, Perfito N, Zann R, Breuner CW, Hahn TP (2011) Physiological trade-offs in self-maintenance: plumage molt and stress physiology in birds. J Exp Biol 214:277–2768. doi:10.1242/jeb.057174 CrossRefGoogle Scholar
  12. Cox RM, John-Alder HB (2005) Testosterone has opposite effects on male growth in lizards (Sceloporus spp.) with opposite patterns of sexual size dimorphism. J Exp Biol 208:4679–4687. doi:10.1242/jeb.01948 PubMedCrossRefGoogle Scholar
  13. Cree A, Amey AP, Whittier JM (2000) Lack of consistent hormonal response to capture during the breeding season of the bearded dragon, Pogona barbata. Comp Biochem Physiol A 126:275–285. doi:10.1016/S1095-6433(00)00210-5 CrossRefGoogle Scholar
  14. Cree A, Guillette LJ, Cockrem JF, Brown MA, Chambers GK (1990) Absence of daily cycles in plasma sex steroids in male and female tuatara (Sphenodon punctatus), and effects of acute capture stress on females. Gen Comp Endocrinol 79:103–113. doi:10.1016/0016-6480(90)90093-2 PubMedCrossRefGoogle Scholar
  15. Dauphin-Villemant C, Xavier F (1987) Nychthermal variations in plasma corticosteroids in captive female Lacerta vivipara Jacquin: influence of stress and reproductive state. Gen Comp Endocrinol 67:292–302. doi:10.1016/0016-6480(87)90183-3 PubMedCrossRefGoogle Scholar
  16. Dunlap KD (1993) Hormonal, physiological and behavioral responses of fence lizards facing drought and malarial parasitism. PhD Dissertation, University of Washington, SeattleGoogle Scholar
  17. Dunlap KD, Schall JJ (1995) Hormonal alterations and reproductive inhibition in male fence lizards (Sceloporus occidentalis) infected with the malarial parasite Plasmodium mexicanum. Physiol Zool 68:608–621Google Scholar
  18. Dunlap KD, Wingfield JC (1995) External and internal influences on indices of physiological stress. I. Seasonal and population variation in adrenocortical secretion of free-living lizards, Sceloporus occidentalis. J Exp Zool 271:36–46. doi:10.1002/jez.1402710105 PubMedCrossRefGoogle Scholar
  19. Eikenaar C, Husak J, Escallón C, Moore IT (2012) Variation in testosterone and corticosterone in amphibians and reptiles: relationships with latitude, elevation, and breeding season length. Am Nat 180:642–654PubMedCrossRefGoogle Scholar
  20. Fokidis HB, Hurley L, Rogowski C, Sweazea K, Deviche P (2011) Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers. Physiol Biochem Zool 84:595–606. doi:10.1086/662068 PubMedCrossRefGoogle Scholar
  21. Fontaine JJ, Arriero E, Schwabl H, Martin TE (2011) Nest predation and circulating corticosterone levels within and among species. Condor 113:825–833. doi:10.1525/cond.2011.110027 CrossRefGoogle Scholar
  22. French SS, Fokidis HB, Moore MC (2008) Variation in stress and innate immunity in the tree lizard (Urosaurus ornatus) across an urban–rural gradient. J Comp Physiol B 178:997–1005. doi:10.1007/s00360-008-0290-8 PubMedCrossRefGoogle Scholar
  23. Graham SP, Freidenfelds NA, McCormick GL, Langkilde T (2012) The impacts of invaders: basal and acute stress glucocorticoid profiles and immune function in native lizards threatened by invasive ants. Gen Comp Endocrinol 176:400–408. doi:10.1016/j.ygcen.2011.12.027 PubMedCrossRefGoogle Scholar
  24. Grassman M, Hess DL (1992) Sex differences in adrenal function in the lizard Cnemidophorus sexlineatus: II Responses to acute stress in the laboratory. J Exp Zool 264:183–188. doi:10.1002/jez.1402640210 PubMedCrossRefGoogle Scholar
  25. Greenberg N, Chen T, Crews D (1984) Social status, gonadal state and the adrenal stress response in the lizard Anolis carolinensis. Horm Behav 18:1–11. doi:10.1016/0018-506X(84)90045-X PubMedCrossRefGoogle Scholar
  26. Heidinger BJ, Nisbet ICT, Lepire JA, Ketterson ED (2006) Attenuation of the stress response facilitates increased reproductive investment with age. Proc R Soc, Ser B 273:2227–2231. doi:10.1098/rspb.2006.3557 CrossRefGoogle Scholar
  27. Hews DK, Hara E, Anderson MC (2012) Sex and species differences in plasma testosterone and in counts of androgen receptor-positive cells in key brain regions of Sceloporus lizard species that differ in aggression. Gen Comp Endocrinol 176:493–499. doi:10.1016/j.ygcen.2011.12.028 PubMedCrossRefGoogle Scholar
  28. Hews DK, Knapp R, Moore MC (1994) Early exposure to androgens affects adult expression of alternative male types in tree lizards. Horm Behav 28:96–115. doi:10.1006/hbeh.1994.1008 PubMedCrossRefGoogle Scholar
  29. Idler DR (1972) Steroids in nonmammalian vertebrates. Academic Press, New YorkGoogle Scholar
  30. Jessop TS, Knapp R, Whittier JM, Limpus CJ (2002) Dynamic endocrine responses to stress: evidence for energetic constraints and status dependence in breeding male green turtles. Gen Comp Endocrinol 126:59–67. doi:10.1006/gcen.2001.7769 PubMedCrossRefGoogle Scholar
  31. Jones RE, Guillette LJ Jr (1982) Hormonal control of oviposition and parturition in lizards. Herpetologica 38:80–93Google Scholar
  32. Klukowski M (2011) Effects of breeding season, testosterone and ACTH on the corticosterone response of free-ranging male fence lizards (Sceloporus undulatus. Gen Comp Endocrinol 173:295–302. doi:10.1016/j.ygcen.2011.06.006 PubMedCrossRefGoogle Scholar
  33. Knapp R, Moore MC (1995) Hormonal responses to aggression vary in different types of agonistic encounters in male tree lizards, Urosaurus ornatus. Horm Behav 29:85–105. doi:10.1006/hbeh.1995.1007 PubMedCrossRefGoogle Scholar
  34. Knapp R, Moore MC (1997) Male morphs in tree lizards have different testosterone responses to elevated levels of corticosterone. Gen Comp Endocrinol 107:273–279. doi:10.1006/gcen.1997.6923 PubMedCrossRefGoogle Scholar
  35. Korte SM, Koolhaas JM, Wingfield JC, McEwen BS (2005) The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev 29:3–38. doi:10.1016/j.neubiorev.2004.08.009 PubMedCrossRefGoogle Scholar
  36. Lance V, Elsey RM (1986) Stress induced suppression of testosterone secretion in male alligators. J Exp Zool 239:241–246. doi:10.1002/jez.1402390211 PubMedCrossRefGoogle Scholar
  37. Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149. doi:10.1016/j.ygcen.2006.02.013 PubMedCrossRefGoogle Scholar
  38. Leaché AD (2010) Species trees for spiny lizards (genus Sceloporus): identifying points of concordance and conflict between nuclear and mitochondrial data. Mol Phylogenet Evol 54:162–171. doi:10.1016/j.ympev.2009.09.006 PubMedCrossRefGoogle Scholar
  39. Licht P, McCreery B, Barnes B, Pang R (1984) Seasonal and stress related changes in plasma gonadotropins, sex steroids, and corticosterone in the bullfrog, Rana catesbeiana. Gen Comp Endocrinol 50:124–145. doi:10.1016/0016-6480(83)90249-6 CrossRefGoogle Scholar
  40. Lovern MB, Wade J (2001) Maternal plasma and egg yolk testosterone concentrations during embryonic development in green anoles (Anolis carolinensis). Gen Comp Endocrinol 124:226–235. doi:10.1006/gcen.2001.7704 PubMedCrossRefGoogle Scholar
  41. Lutterschmidt WI, Lutterschmidt DI, Mason RT, Reinert HK (2009) Seasonal variation in hormonal responses of timber rattlesnakes (Crotalus horridus) to reproductive and environmental stressors. J Comp Physiol B 179:747–757. doi:10.1007/s00360-009-0356-2 PubMedCrossRefGoogle Scholar
  42. MacLean GS, Lee AK, Wilson KJ (1973) A simple method of obtaining blood from lizards. Copeia 1973:338–339CrossRefGoogle Scholar
  43. Manzo C, Zerani M, Gobbetti A, Di Fiore MM, Angelini F (1994) Is corticosterone involved in the reproductive processes of the male lizard, Podarcis siculasicula? Horm Behav 28:117–129. doi:10.1006/hbeh.1994.1009 PubMedCrossRefGoogle Scholar
  44. Milliken GA, Johnson DE (1992) Analysis of messy data, vol 1: designed experiments. Chapman and Hall, New YorkGoogle Scholar
  45. Moore MC (1986) Elevated testosterone levels during nonbreeding-season territoriality in a fall-breeding lizard, Sceloporus jarrovi. J Comp Physiol A 158:159–163PubMedCrossRefGoogle Scholar
  46. Moore IT, Jessop TS (2003) Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 43:39–47. doi:10.1016/S0018-506X(02)00038-7 PubMedCrossRefGoogle Scholar
  47. Moore MC, Thompson CW, Marler CA (1991) Reciprocal changes in corticosterone and testosterone levels following acute and chronic capture-handling stress in the tree lizard, Urosaurus ornatus. Gen Comp Endocrinol 81:217–226. doi:10.1016/0016-6480(91)90006-R PubMedCrossRefGoogle Scholar
  48. Moore MC, Hews DK, Knapp R (1998) Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. Am Zool 38:133–151Google Scholar
  49. Moore IT, Lemaster MP, Mason RT (2000) Behavioral and hormonal responses to capture stress in male red-sided garter snake, Thamnophis sirtalis. Anim Behav 59:529–534. doi:10.1006/anbe.1999.1344 PubMedCrossRefGoogle Scholar
  50. Moore IT, Green MJ, Mason RT (2001) Environmental and seasonal adaptations of the adrenocortical and gonadal responses to capture stress in two populations of the male garter snake, Thamnophis sirtalis. J Exp Zool 289:99–108. doi:10.1002/1097-010X(20010201)289:2<99:AID-JEZ3>3.0.CO;2-Z PubMedCrossRefGoogle Scholar
  51. Oppliger A, Clobert J, Lecomte J, Lorenzon P, Boudjemadi K, John-Alder HB (1998) Environmental stress increases the prevalence and intensity of blood parasite infection in the common lizard Lacerta vivipara. Ecol Lett 1:129–138CrossRefGoogle Scholar
  52. Phillips JB, Klukowski M (2008) Influence of season and adrenocorticotropic hormone on corticosterone in free-living female eastern fence lizards (Sceloporus undulatus). Copeia 2008:570–578. doi:10.1643/CP-06-176 CrossRefGoogle Scholar
  53. Robertson JM, Hoversten K, Grundler M, Poorten TJ, Hews DK, Rosenblum EB (2011) Colonization of novel White Sands habitat is associated with changes in anti-predator behaviour. Biol J Linn Soc 103:557–657. doi:10.1111/j.1095-8312.2011.01644.x CrossRefGoogle Scholar
  54. Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255. doi:10.1016/j.tree.2004.03.008 PubMedCrossRefGoogle Scholar
  55. Romero LM, Reed JM (2005) Collecting baseline corticosterone samples from vertebrates in the field: is under 3 min good enough? Comp Biochem Physiol 140:73–79Google Scholar
  56. Romero LM, Wikelski M (2001) Corticosterone levels predict survival probabilities of Galapagos marine Iguanas during El Nino events. Proc Natl Acad Sci USA 98:7366–7370. doi:10.1073/pnas.131091498 PubMedCrossRefGoogle Scholar
  57. Rose B (1981) Factors affecting activity in Sceloporus virgatus. Ecology 62:706–716CrossRefGoogle Scholar
  58. Rostal DC, Owens DW, Grumbles JS, MacKenzie DS, Amoss MS (1998) Seasonal reproductive cycle of the Kemp’s Ridley sea turtle (Lepidochelys kempi). Gen Comp Endocrinol 109:232–243. doi:10.1006/gcen.1997.7026 PubMedCrossRefGoogle Scholar
  59. Rubenstein DR, Wikelski M (2005) Steroid hormones and aggression in female Galápagos marine Iguanas. Horm Behav 48:329–341. doi:10.1016/j.yhbeh.2005.04.006 PubMedCrossRefGoogle Scholar
  60. Staub NL, DeBeer M (1997) The role of androgens in female vertebrates. Gen Comp Endocrinol 108:1–24. doi:10.1006/gcen.1997.6962 PubMedCrossRefGoogle Scholar
  61. Thaker M, Lima SL, Vanak AT, Hews DK (2010) Hormonal mediation of aversive learning: attack intensity affects memory in a wild vertebrate. Am Nat 175: 50–60. doi: 10.1086/648558. (supplemental online materials)Google Scholar
  62. Tokarz RR (1987) Effects of corticosterone manipulations on male aggressive behavior in Anolis sagrei. Horm Behav 21:358–370. doi:10.1016/0018-506X(87)90020-1 PubMedCrossRefGoogle Scholar
  63. Tokarz RR, Summers CH (2011) Stress and reproduction in reptiles. In: Norris DO, Lopez KH (eds) Hormones and reproduction of vertebrates, vol 3—reptiles. Academic Press, New York, pp 169–213CrossRefGoogle Scholar
  64. Tokarz RR, McMann S, Seitz L, John-Alder H (1998) Plasma corticosterone and testosterone levels during the annual reproductive cycle of male brown anoles (Anolis sagrei). Physiol Zool 71:139–146PubMedGoogle Scholar
  65. Vinegar MB (1972) The function of breeding coloration in the lizard, Sceloporus virgatus. Copeia 1972:660–664CrossRefGoogle Scholar
  66. Vinegar MB (1975) Demography of the striped plateau lizard, Sceloporus virgatus. Ecology 56:172–182CrossRefGoogle Scholar
  67. Weiss SL (2002) Reproductive signals of female lizards: pattern of trait expression and male response. Ethology 108:793–813. doi:10.1046/j.1439-0310.2002.00819.x CrossRefGoogle Scholar
  68. Whittier JM, Mason RT, Crews D (1987) Plasma steroid hormone levels of female red-sided garter snakes, Thamnophis sirtalis parietalis: relationship to mating and gestation. Gen Comp Endocrinol 67:33–43. doi:10.1016/0016-6480(87)90202-4 PubMedCrossRefGoogle Scholar
  69. Wiens J, Kuczynski C, Arif S, Reeder T (2010) Phylogenetic relationships of phrynosomatidae lizards based on nuclear and mitochondrial data, and a revised phylogeny for Sceloporus. Mol Phylogenet Evol 54:150–161. doi:10.1016/j.ympev.2009.09.008 PubMedCrossRefGoogle Scholar
  70. Wilson BS, Wingfield JC (1992) Correlation between female reproductive condition and plasma corticosterone in the lizard Uta stansburiana. Copeia 1992:691–697CrossRefGoogle Scholar
  71. Wingfield JC (1988) Changes in reproductive function of free-living birds in direct response to environmental perturbations. In: Stetson MH (ed) Processing of environmental information in vertebrates. Springer, New York, pp 121–148CrossRefGoogle Scholar
  72. Wingfield JC, Farner DS (1975) The determination of five steroids in avian plasma by radioimmunoassay and competitive protein binding. Steroids 26:311–327PubMedCrossRefGoogle Scholar
  73. Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724. doi:10.1046/j.1365-2826.2003.01033.x PubMedCrossRefGoogle Scholar
  74. Wingfield JC, O’Reilly KM, Astheimer LB (1995) Modulation of the adrenocortical responses to acute stress in Arctic birds: a possible ecological basis. Am Zool 35:185–194Google Scholar
  75. Wingfield JC, Hunt K, Breuner C, Dunlap K, Fowler GS, Freed L, Lepson J (1997) Environmental stress, field endocrinology, and conservation biology. In: Clemmons JR, Buchholz R (eds) Behavioral approaches to conservation in the wild. Cambridge University Press, Cambridge, pp 95–131Google Scholar
  76. Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone–behavior interactions: the “emergency life history stage”. Am Zool 38:191–206Google Scholar
  77. Woodley SK, Moore MC (1999) Ovarian hormones influence territorial aggression in free-living female mountain spiny lizards. Horm Behav 35:205–214. doi:10.1006/hbeh.1999.1514 PubMedCrossRefGoogle Scholar
  78. Woodley SK, Moore MC (2002) Plasma corticosterone response to an acute stressor varies according to reproductive condition in female tree lizards (Urosaurus ornatus). Gen Comp Endocrinol 128:143–148. doi:10.1016/S0016-6480(02)00068-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of BiologyIndiana State UniversityTerre HauteUSA
  2. 2.Texas Department of State Health Services, Office of Border Health-M/C 1962AustinUSA

Personalised recommendations