Skip to main content
Log in

Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum

Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Subterranean rodents inhabit closed tunnel systems that are hypoxic and hypercapnic and buffer aboveground ambient temperature. In contrast to other strictly subterranean rodents, Ctenomys talarum exhibits activity on the surface during foraging and dispersion and hence, is exposed also to the aboveground environment. In this context, this species is a valuable model to explore how the interplay between underground and aboveground use affects the relationship among basal metabolic rate (BMR), cold-induced maximum metabolic rate (MMR), shivering (ST), and non-shivering thermogenesis (NST). In this work, we provide the first evidence of the presence of NST, including the expression of uncoupling proteins in brown adipose tissue (BAT), and shivering thermogenesis in Ctenomys talarum, a species belonging to the most numerous subterranean genus, endemic to South America. Our results show no differences in BMR, cold-induced MMR, and NST between cold- (15 °C) and warm- (25 °C) acclimated individuals. Furthermore, thermal acclimation had no effect on the expression of mitochondrial uncoupling protein 1 (UCP1) in BAT. Only cytochrome c oxidase (COX) content and activity increased during cold acclimation. When interscapular BAT was removed, NST decreased more than 30 %, whereas cold-induced MMR remained unchanged. All together, these data suggest that cold-induced MMR reaches a maximum in warm-acclimated individuals and so a probable ceiling in NST and UCP1 expression in BAT. Possible thermogenic mechanisms explaining the increase in the oxidative capacity, mediated by COX in BAT of cold-acclimated individuals and the role of ST in subterranean life habits are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Almeida MC, Cruz-Neto AP (2011) Thermogenic capacity of three species of fruit-eating phyllostomid bats. J Therm Biol 36:225–231

    Article  Google Scholar 

  • Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Z Saugetierkunde 57:163–168

    Google Scholar 

  • Antinuchi CD, Zenuto RR, Luna F, Cutrera AP, Perissinotti PP, Busch C (2007) Energy budget in subterranean rodents: insights from the tuco-tuco Ctenomys talarum (Rodentia: Ctenomyidae). In: Kelt DA, Lessa EP, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. University of California Publications in Zoology, California, Pearson, pp 111–139

    Google Scholar 

  • Bacigalupe LD, Bozinovic F (2002) Design, limitations and sustained metabolic rate: lessons from small mammals. J Exp Biol 205:2663–2670

    Google Scholar 

  • Bao W, Wang DH, Wang Z, Zhou Y, Wang L (2001) Seasonal changes of non-shivering thermogenesis in four rodents from Kubuqi desert of inner Mongolia. Acta Theriol Sin 21:101–106

    Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649–654

    Article  PubMed  CAS  Google Scholar 

  • Bozinovic F (1992) Scaling of basal and maximum metabolic rate in rodents and the aerobic capacity model for the evolution of endothermy. Physiol Zool 65:921–931

    Google Scholar 

  • Bozinovic F, Rosenmann M (1989) Maximum metabolic rate of rodents: physiological and ecological consequences on distributional limits. Funct Ecol 3:173–181

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buffenstein R, Yahav S (1991) Is the naked mole-rat Heterocephalus glaber an endothermic yet poikilothermic mammal? J Therm Biol 16:227–232

    Article  Google Scholar 

  • Burda H, Šumbera R, Begall S (2007) Microclimate in burrows of subterranean rodents—revisited. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Heidelberg, pp 21–33

    Chapter  Google Scholar 

  • Busch C (1989) Metabolic rate and thermoregulation in two species of tuco-tuco, Ctenomys talarum and Ctenomys australis (Caviomorpha, Octodontidae). Comp Biochem Physiol A 93:345–347

    Article  PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Chrzanowska-Lightowlers ZM, Turnbull DM, Lightowlers DM (1993) A microtiter plate assay for cytocrome c oxidase in permeabilized whole cells. Anal Biochem 214:45–49

    Article  PubMed  CAS  Google Scholar 

  • Cortés A, Miranda E, Rosenmann M, Rau JR (2000) Thermal biology of the fossorial rodent Ctenomys fulvus from the Atacama desert, Northern Chile. J Therm Biol 6:425–430

    Article  Google Scholar 

  • Cutrera AP, Antinuchi CD (2004) Cambios en el pelaje del roedor subterráneo Ctenomys talarum: posible mecanismo térmico compensatorio. Rev Chil Hist Nat 77:235–242

    Article  Google Scholar 

  • Cutrera AP, Antenucci CD, Mora MS, Vassallo AI (2006) Home-range and daily movements of the South American subterranean rodent Ctenomys talarum. J Mamm 87:1183–1192

    Article  Google Scholar 

  • Egginton S, Fairney J, Bratcher J (2001) Differential effects of cold exposure on muscle fiber composition and capillary supply in hibernator and non-hibernator rodents. Exp Physiol 86:629–639

    Article  PubMed  CAS  Google Scholar 

  • Else PL, Hulbert AJ (2003) Membranes as metabolic pacemakers. Clin Exp Pharmacol 30:559–564

    Article  CAS  Google Scholar 

  • Feist DD, Morrison PR (1981) Seasonal changes in metabolic capacity and norepinephrine thermogenesis in the Alaskan red-backed vole: environmental cues and annual differences. Comp Biochem Physiol A 69:697–700

    Article  Google Scholar 

  • Feist DD, Rosenmann M (1976) Norepinephrine thermogenesis in seasonally acclimatized and cold acclimated red-backed voles in Alaska. Can J Physiol Pharmacol 54:146–153

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Florez-Duquet M, McDonald RB (1998) Cold-induced thermoregulation and biological aging. Physiol Rev 78:339–358

    PubMed  CAS  Google Scholar 

  • Garland T, Diaz-Uriarte R (1999) Politomies and phylogenetically independent contrast: an examination of the bounded degrees of freedom approach. Syst Biol 48:547–558

    Article  PubMed  Google Scholar 

  • Gębczyński AK, Konarzewski M (2009) Metabolic correlates of selection on aerobic capacity in laboratory mice: a test of the model for the evolution of endothermy. J Exp Biol 212:2872–2878

    Article  PubMed  Google Scholar 

  • Haim A, Fairall N (1986) Physiological adaptations to the subterranean environment by the mole rat Cryptomys hottentotus. Cimbebasia 8:49–53

    Google Scholar 

  • Hayes JF, Garland T (1995) The evolution of endothermy: testing the aerobic capacity model. Evolution 49:836–847

    Article  Google Scholar 

  • Heldmaier G (1989) Seasonal acclimatization of energy requirements in mammals: functional significance of body weight control, hypothermia, torpor and hibernation. In: Wieser W, Gnaiger E (eds) Energy transformations in cells and organisms. Georg Thieme Verlag, Stuttgart, pp 130–139

    Google Scholar 

  • Hislop MS, Buffenstein R (1994) Noradrenaline induces non-shivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. J Therm Biol 19:25–32

    Article  CAS  Google Scholar 

  • Hulbert AJ, Else PL (1999) Membranes as possible pacemakers of metabolism. J Theor Biol 199:257–274

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Else PL (2005) Membranes and the setting of energy demand. J Exp Biol 208:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Jansa SA, Weksler M (2004) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol Phylogenet Evol 31:256–276

    Article  PubMed  CAS  Google Scholar 

  • Jansky L (1973) Non-shivering thermogenesis and its thermoregulatory significance. Biol Rev 48:85–132

    PubMed  CAS  Google Scholar 

  • Klaus S, Heldmaier G, Ricquier D (1988) Seasonal acclimation of bank voles and wood mice: nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J Comp Physiol B 158:157–164

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M (1961) The fire of life: an introduction to animal energetic. Wiley, New York

    Google Scholar 

  • Klingenspor M (2003) Cold-induced recruitment of brown adipose tissue thermogenesis. Exp Physiol 88:141–148

    Article  PubMed  CAS  Google Scholar 

  • Klingenspor M, Ivemeyer M, Wiesinger H, Haas K, Heldmaier G, Wiesner RJ (1996) Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation. Biochem J 316:607–613

    PubMed  CAS  Google Scholar 

  • Kronfeld-Schor N, Haim A, Dayan T, Zisapel N, Klingenspor M, Heldmaier G (2000) Seasonal thermogenic acclimation of diurnally and nocturnally active desert spiny mice. Physiol Biochem Zool 73:37–44

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lasiewski RC, Acosta AL, Berstein MH (1966) Evaporative water loss in birds. I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability. Comp Biochem Physiol A 19:445–457

    Article  Google Scholar 

  • Li Q, Sun R, Huang C, Wang Z, Liu X, Hou J, Liu J, Cai L, Li N, Zhang S, Wang Y (2001) Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp Biochem Physiol A 129:949–961

    Article  CAS  Google Scholar 

  • Lovegrove BG (2005) Seasonal thermoregulatory responses in mammals. J Comp Physiol B 175:231–247

    Article  PubMed  Google Scholar 

  • Luna F, Antenucci CD, Bozinovic F (2009) Comparative energetics of the subterranean Ctenomys rodents, breaking patterns. Physiol Biochem Zool 82:226–235

    Article  PubMed  Google Scholar 

  • Luna F, Antinuchi CD (2003) Daily movements and maximum speed in Ctenomys talarum (Rodentia: Ctenomyidae) in artificial enclosures. J Mamm 84:272–277

    Article  Google Scholar 

  • Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: Effect of soil hardness. Can J Zool 84:661–667

    Article  Google Scholar 

  • Luna F, Antinuchi CD (2007) Energetics and thermoregulation during digging in the tuco-tuco (Ctenomys talarum). Comp Biochem Physiol A 146:559–564

    Article  Google Scholar 

  • Luna F, Antinuchi CD, Busch C (2000) Ritmos de actividad locomotora y uso de las cuevas en condiciones seminaturales en Ctenomys talarum (Rodentia, Octodontidae). Rev Chil Hist Nat 73:39–46

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2006) Mesquite: a modular system for evolutionary analysis. Version 1.12. http://www.mesquiteproject.org

  • Maina JN, Gebreegziabher Y, Woodley R, Buffenstein R (2001) Comparative morphology and morphometry of the lungs of captive in-burrow temperature maintained and captive cold exposed naked mole-rats, Heterocephalus glaber. J Zool 253:371–382

    Article  Google Scholar 

  • Malizia AI (1998) Population dynamics of the fossorial rodent Ctenomys talarum (Rodentia: Octodontidae). J Zool 244:545–551

    Article  Google Scholar 

  • Malizia AI, Zenuto RR, Busch C (1995) Demographic and reproductive attributes of dispersers in two populations of the subterranean rodent Ctenomys talarum (tuco-tuco). Can J Zool 73:732–738

    Article  Google Scholar 

  • McNab BK (1966) The metabolism of fossorial rodents: a study of convergence. Ecology 47:712–733

    Article  Google Scholar 

  • McNab BK (1979) The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60:1010–1020

    Article  Google Scholar 

  • Meroi FR (2008) Efecto de las variaciones climáticas estacionales sobre la tasa metabólica basal en el roedor subterráneo Ctenomys talarum. Licenciatura Thesis, University of Mar del Plata

  • Michaux J, Reyes A, Catzeflis F (2001) Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18:2017–2031

    Article  PubMed  CAS  Google Scholar 

  • Midford PE, Garland T, Maddison WP (2003) PDAP:PDTREE Package for Mesquite. http://www.mesquiteproject.org/pdap_mesquite/index.html

  • Moshkin MP, Novikov EA, Petrovski DV (2001) Seasonal changes of thermoregulation in the mole vole Ellobius talpinus. Physiol Biochem Zool 74:869–875

    Article  PubMed  CAS  Google Scholar 

  • Mzilikazi N, Jastroch M, Meyer CW, Klingenspor M (2007) The molecular and biochemical basis of nonshivering thermogenesis in an African endemic mammal, Elephantulus myurus. Am J Physiol 293:R2120–R2127

    CAS  Google Scholar 

  • Mzilikazi N, Lovegrove BG (2006) Noradrenalin induces thermogenesis in a phylogenetically ancient eutherian mammal, the rock elephant shrew, Elephantulus myurus. J Comp Physiol B 176:75–84

    Article  PubMed  CAS  Google Scholar 

  • Nespolo RF, Bacigalupe LD, Rezende EL, Bozinovic F (2001a) When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia). Physiol Biochem Zool 74:325–332

    Article  PubMed  CAS  Google Scholar 

  • Nespolo RF, Opazo JC, Bozinovic F (2001b) Thermal acclimation and non-shivering thermogenesis in three species of South American rodents: a comparison between arid and mesic habitats. J Arid Environ 48:581–590

    Article  Google Scholar 

  • Nevo E (1999) Mosaic evolution of subterranean mammals: regression, progression, and global convergence. Oxford University Press, New York

    Google Scholar 

  • Pagel M (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Article  Google Scholar 

  • Perrin MR, Richardson EJ (2005) Metabolic rate, maximum metabolism, and advantages of torpor in the fat mouse Steatomys pratensis natalensis Roberts, 1921 (Dendeomurinae). J Therm Biol 30:603–610

    Article  Google Scholar 

  • Puigserver P, Llado I, Palou A, Gianotti M (1991) Evidence for masking of brown adipose tissue mitochondrial GDP-binding sites in response to fasting in rats made obese by dietary manipulation: effects of reversion to standard diet. Biochem J 279:575–579

    PubMed  CAS  Google Scholar 

  • Purvis A, Garland T (1993) Politomies in comparative analyses of continuous characters. Syst Biol 42:569–575

    Article  Google Scholar 

  • Quevedo S, Roca P, Pico C, Palou A (1998) Sex-associated differences in cold-induced UCP1 synthesis in rodent brown adipose tissue. Pflügers Arch 436:689–695

    Article  PubMed  CAS  Google Scholar 

  • Rezende EL, Bozinovic F, Garland T (2004) Climatic adaptation and the evolution of maximum and basal rates of metabolism in rodents. Evolution 58:1361–1374

    PubMed  Google Scholar 

  • Richardson CS, Dohm MR, Garland T (1994) Metabolism and thermoregulation in crosses between wild and random-bred house mice (Mus domesticus). Physiol Zool 67:944–975

    Google Scholar 

  • Rodriguez-Cuenca S, Pujol E, Justo R, Frontera M, Oliver J, Gianotti M, Roca P (2002) Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem 277:42958–42963

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Serrano E, Bozinovic F (2009) Interplay between global patterns of environmental temperature and variation in nonshivering thermogenesis of rodent species across large spatial scales. Glob Change Biol 15:2116–2122

    Article  Google Scholar 

  • Rosenmann M, Morrison P (1974) Maximum oxygen consumption and heat loss facilitation in small by He–O2. Am J Physiol 226:490–495

    PubMed  CAS  Google Scholar 

  • Sadowska ET, Labocha MK, Baliga K, Stanisz A, Wróblewska AK, Jagusiak W, Koteja P (2005) Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy. Evolution 59:672–681

    PubMed  Google Scholar 

  • Scantlebury M, Shanas U, Haim A (2005) Seasonal acclimatization of non-shivering termogenesis in common spiny mice (Acomys cahirinus) from different habitats. Afr Zool 40:319–322

    Google Scholar 

  • Spotorno AE, Valladares JP, Marín JC, Zeballos H (2004) Molecular diversity among domestic guinea-pigs (Cavia porcellus) and their close phylogenetic relationship with the Andean wild species Cavia tschudii. Rev Chil Hist Nat 77:243–250

    Article  Google Scholar 

  • Suarez RK (1998) Oxygen and the upper limits to animal design and performance. J Exp Biol 201:1065–1072

    PubMed  CAS  Google Scholar 

  • Šumbera R, Zelová J, Kunc P, Knížková I, Burda H (2007) Patterns of surface temperatures in two mole-rats (Bathyergidae) with different social systems as revealed by IR-thermography. Physiol Behav 92:526–532

    Google Scholar 

  • Valle A, Català-Niell A, Colom B, García-Palmer FJ, Oliver J, Roca P (2005) Sex-related differences in energy balance in response to caloric restriction. Am J Physiol 289:15–22

    Google Scholar 

  • Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool 52:122–135

    Google Scholar 

  • Wang JM, Zhang YM, Wang DH (2006a) Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai–Tibetan plateau. J Comp Physiol B 176:663–671

    Article  PubMed  CAS  Google Scholar 

  • Wang JM, Zhang YM, Wang DH (2006b) Seasonal thermogenesis and body mass regulation in plateau pikas (Ochotona curzoniae). Oecologia 149:373–382

    Article  PubMed  Google Scholar 

  • Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208:1635–1644

    Article  PubMed  Google Scholar 

  • Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testeable hypothesis of structure–function relationship. Proc Natl Acad Sci USA 88:10357–10361

    Article  PubMed  CAS  Google Scholar 

  • Wharton D, Tzagoloff A (1967) Cytochrome c oxidase from beef heart mitochondria. Methods Enzymol 10:245–246

    Article  CAS  Google Scholar 

  • White CR (2003) The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals. Physiol Biochem Zool 76:122–134

    Article  PubMed  Google Scholar 

  • White CR, Terblanche JS, Kabat AP, Blackburn TM, Chown SL, Butler PJ (2008) Allometric scaling of maximum metabolic rate: the influence of temperature. Funct Ecol 22:616–623

    Article  Google Scholar 

  • Withers PC (1977) Measurements of metabolic rate, VCO2, and evaporative water loss with a flow through mask. J Appl Physiol 42:120–123

    PubMed  CAS  Google Scholar 

  • Woodley R, Buffenstein R (2002) Thermogenic changes with chronic cold exposure in the naked mole-rat (Heterocephalus glaber). Comp Biochem Physiol A 133:827–834

    Article  Google Scholar 

  • Woods CA (1984) Histricognath rodents. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. Wiley, New York, pp 389–446

    Google Scholar 

  • Wunder BA, Gettinger RD (1996) Effects of body mass and temperature acclimation on the nonshivering thermogenic response of small mammals. In: Geiser F, Hulbert AJ, Nicol SC (eds) Adaptations to the cold: tenth international hibernation symposium. University of New England Press, Armidale, pp 131–139

    Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Zhang XY, Wang DH (2007a) Seasonal changes in thermogenesis and body mass in wild Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A 148:346–353

    Google Scholar 

  • Zhang XY, Wang DH (2007b) Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt’s voles Lasiopodomys brandtii. J Exp Biol 210:512–521

    Article  PubMed  Google Scholar 

  • Zhao Z, Cao J, Liu ZC, Wang GY, Li LS (2010) Seasonal regulations of resting metabolic rate and thermogenesis in striped hamster (Cricetulus barabensis). J Therm Biol 35:401–405

    Article  Google Scholar 

Download references

Acknowledgments

We thank R.R. Zenuto, M. S. Fanjul, and F. Luchessi for helping with individuals in the lab and during surgery procedures. We also thank J. Sastre for assisting us during molecular laboratory work. We appreciate the comments provided by reviewers that improved an earlier version of this manuscript. Special thanks are due to F. Vera for English linguistic revision of the manuscript. FL was supported by CONICET Partial Travel Support. This work was supported by CONICET (PIP 2787 to CDA), and by ANPCyT (PICT 2102 to CDA, and PICT 1816 to FL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Luna.

Additional information

Communicated by I.D. Hume.

C.D. Antenucci was formerly C.D. Antinuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna, F., Roca, P., Oliver, J. et al. Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum . J Comp Physiol B 182, 971–983 (2012). https://doi.org/10.1007/s00360-012-0675-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-012-0675-6

Keywords

Navigation