Skip to main content
Log in

The physiology of hyper-salinity tolerance in teleost fish: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Hyper-saline habitats (waters with salinity >35 ppt) are among the harshest aquatic environments. Relatively few species of teleost fish can tolerate salinities much above 50 ppt, because of the challenges to osmoregulation, but those that do, usually estuarine, euryhaline species, show a strong ability to osmoregulate in salinities well over 100 ppt. Typically, plasma Na+ and Cl concentrations rise slowly or not at all up to about 65 ppt. At higher salinities ion levels do rise, but the increase is small relative to the magnitude of increase in concentrations of the surrounding water. A number of adjustments are responsible for such strong osmoregulation. Reduced branchial water permeability is indicated by the observation that with the exposure to hyper-salinities drinking rates rise more slowly than the branchial osmotic gradient. Lower water permeability limits osmotic water loss and greatly reduces the salt load incurred in replacing it. Still, increased gut Na+/K+-ATPase (NAK) activity is necessary to absorb the larger gut salt load and increased HCO3 secretion is required to precipitate Ca2+ and some Mg2+ in the imbibed water to facilitate water absorption. All Na+ and Cl taken up must be excreted and increased branchial salt excreting capacity is indicated by elevated mitochondrion-rich cell density and size, gill NAK activity and expression of chloride channels. Excretion of Na+ and Cl occurs against a larger gradient than in seawater and calculation of the equilibrium potential for Na+ across the gill epithelium indicates that the trans-epithelial potential required for excretion of Na+ climbs with salinity up to about 65 ppt before leveling off due to the increasing plasma Na+ levels. During acute transition to SW or mildly hyper-saline waters, some species have shown the ability to upregulate branchial NAK activity rapidly and this may play an important role in limiting disturbances at higher salinities. It does not appear that the opercular epithelium, which in SW acts in a way that is functionally similar to the gills, continues to do so in hyper-saline waters. Little is know about the hormones involved in acclimation to hyper-salinity, but the few studies available suggest a role for cortisol, but not growth hormone and insulin-like growth factor. Despite the increased transport capacity evident in both the gill and gut in hyper-saline waters there is no clear trend toward increased metabolic rate. These studies provide a general outline of the mechanisms of osmoregulation in these species, but significant questions still remain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bindon SD, Gilmour KM, Fenwick JC, Perry SF (1994) The effects of branchial chloride cell proliferation on respiratory function in the rainbow trout Oncorhynchus mykiss. J Exp Biol 197:47–63

    PubMed  Google Scholar 

  • Brill R, Swimmer Y, Taxboel C, Cousins K, Lowe T (2001) Gill and intestinal Na+-K+ ATPase activity, and estimated maximal osmoregulatory costs, in the three high-energy-demand teleosts: yellowfin tuna (Thunnus albacares), skipjack tuna (Katsuwonus pelamis) and dolphin fish (Coryphaena hippurus). Mar Biol 138:935–944

    Article  CAS  Google Scholar 

  • Courtois LA (1976) Respiratory responses of Gillichthys mirabilis to changes in temperature, dissolved oxygen and salinity. Comp Biochem Physiol A 53:7–10

    Article  PubMed  CAS  Google Scholar 

  • Cutler CP, Cramb G (2002) Branchial expression of an aquaporin 3 (AQP-3) homologue is downregulated in the European eel Anguilla anguilla following seawater acclimation. J Exp Biol 205:2643–2651

    PubMed  CAS  Google Scholar 

  • Cutler CP, Martinez AS, Cramb G (2007) The role of aquaporin 3 in teleost fish. Comp Biochem Physiol A 148:82–91

    Article  Google Scholar 

  • Deane EE, Woo NYS (2004) Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol Regul Integr Comp Physiol 287:R1054–R1063

    Article  PubMed  CAS  Google Scholar 

  • Evans DH (1993) Osmotic and Ionic Regulation. In: Evans DH (ed) The Physiology of Fishes. CRC Press, Boca Raton, pp 315–342

    Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid–base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177

    Article  PubMed  CAS  Google Scholar 

  • Fiess JC, Kunkel-Patterson A, Mathias L, Riley LG, Yancey PH, Hirano T, Grau EG (2007) Effects of environmental salinity and temperature on osmoregulatory abiligy, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus). Comparative Biochemistry and Physiology A 146:252–264

    Article  Google Scholar 

  • Fiol DF, Kultz D (2005) Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells. Proc Natl Acad Sci 102:927–932

    Article  PubMed  CAS  Google Scholar 

  • Fiol DF, Chan SY, Kultz D (2006) Regulation of osmotic stress transcription factor 1 (Ostf1) in tilapia (Oreochromis mossambicus) gill epithelium during salinity stress. J Exp Biol 209:3257–3265

    Article  PubMed  CAS  Google Scholar 

  • Genz J, Taylor J, Grosell M (2008) Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid-base balance in Opsanus beta. J Exp Biol 211:2327–2335

    Article  PubMed  CAS  Google Scholar 

  • Genz J, McDonald MD, Grosell M (2011) Concentration of MgSO4 in the intestinal lumen of Opsanus beta limits osmoregulation in response to acute hypersalinity stress. Am J Phyisol Regul Integr Comp Physiol 300:R895–R909

    Article  CAS  Google Scholar 

  • Goldman CR, Horne AJ (1983) Limnology. McGraw-Hill Book Company, New York

    Google Scholar 

  • Gonzalez RJ, McDonald DG (1992) The relationship between oxygen consumption and ion loss in a freshwater fish. J Exp Biol 163:317–332

    Google Scholar 

  • Gonzalez RJ, McDonald DG (1994) The relationship between oxygen uptake and ion loss among fish from diverse habitats. J Exp Biol 190:95–108

    PubMed  Google Scholar 

  • Gonzalez RJ, Cooper J, Head D (2005) Physiological responses to hyper-saline waters in sailfin mollies (Poecilia latipinna). Comp Biochem Physiol A 142:397–403

    Article  CAS  Google Scholar 

  • Griffith RW (1974) Environment and salinity tolerance in the genus Fundulus. Copeia 1974:319–331

    Article  Google Scholar 

  • Haney DC, Nordlie FG (1997) Influence of environmental salinity on routine metabolic rate and critical oxygen tension of Cyprinodon variegatus. Physiol Zool 70:511–518

    Article  PubMed  CAS  Google Scholar 

  • Haney DC, Walsh SJ (2003) Influence of salinity and temperature on the physiology of Limia melanotata (Cyprinodontiformes: Poeciliidae): a search for abiotic factors limiting insular distribution in Hispanola. Caribbean J Sci 39:327–337

    Google Scholar 

  • Hickman CP (1968) Ingestion, intestinal absorption and elimination of sea water and salts in the southern flounder, Paralichthys lethostigma. Can J Zool 46:457–466

    Article  PubMed  Google Scholar 

  • Hiroi J, McCormick SD, Ohtani-Kaneko R, Kaneko T (2005) Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl cotransporter and CFTR anion channel. J Exp Biol 208:2023–2036

    Article  PubMed  CAS  Google Scholar 

  • Hiroi J, Yasumasu S, McCormick SD, Hwang PP, Kaneko T (2008) Evidence for an apical Na–Cl cotransporter involved in ion uptake in teleost fish. J Exp Biol 211:2584–2599

    Article  PubMed  CAS  Google Scholar 

  • Hossler FE (1980) Gill arch of the mullet, Mugil cephalus, III: rate of response to salinity change. Am J Physiol 238:R160–R164

    PubMed  CAS  Google Scholar 

  • Iwama GK, Takemura A, Takano K (1997) Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water. J Fish Biol 51:886–894

    Article  Google Scholar 

  • Jordan F, Haney DC, Nordlie FG (1993) Plasma osmotic regulation and routine metabolism in the Eustis Pupfish, Cyprinodon variegatus hubbsi (Teleostei: Cyprinodontidae). Copeia 1993:784–789

    Article  Google Scholar 

  • Karnaky KJ Jr, Ernst SA, Philpott CW (1976) Killifish opercular skin: a flat epithelium with a high density of chloride cells. J Exp Biol 199:355–364

    Google Scholar 

  • Kirschner LB (1997) Extrarenal mechanisms of hydromineral and acid–base regulation in aquatic vertebrates. In: Dantzer WH (ed) Handbook of physiology–comparative physiology. Oxford University Press, New York, pp 577–622

    Google Scholar 

  • Kultz D, Onken H (1993) Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress. Mar Biol 117:527–533

    Google Scholar 

  • Kultz D, Bastrop R, Jurss K, Siebers D (1992) Mitochondria-rich (MR) cells and the activities of the Na+/K+-ATPase and carbonic anhydrase in the gill and opercular epithelium of Oreochromis mossambicus adapted to various salinities. Comp Biochem Physiol B 102:293–301

    Article  Google Scholar 

  • Kultz D, Jurss K, Jonas L (1995) Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish Oreochromis mossambicus adapted to various salinities. Cell Tissue Res 279:65–73

    Article  Google Scholar 

  • Kultz D, Chakravarty D, Adilakshmi T (2001) A novel 14–3-3 gene is osmoregulated in gill epithelium of the euryhaline teleost Fundulus heteroclitus. J Exp Biol 204:2975–2985

    PubMed  CAS  Google Scholar 

  • Laurent P, Perry SF (1990) Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell Tissue Res 259:429–442

    Article  CAS  Google Scholar 

  • Lemarie G, Baroiller JF, Clota F, Lazard J, Dosdat A (2004) A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron. Aquaculture 240:575–587

    Article  CAS  Google Scholar 

  • Mancera JM, McCormick SD (2000) Rapid activation of gill Na+, K+-ATPase in the euryhaline teleost Fundulus heteroclitus. J Exp Zool 287:263–274

    Article  PubMed  CAS  Google Scholar 

  • Marshall WS (2002) Na+, Cl, Ca2+, and Zn2+ transport by fish gills: retrospective, review and prospective synthesis. J Exp Biol 293:264–283

    CAS  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  • McDonald MD, Grosell M (2006) Maintaining osmotic balance with an aglomerular kidney. Comp Biochem Physiol A 143:447–458

    Google Scholar 

  • Morgan JD, Iwama GK (1999) Energy cost of NaCl transport in isolated gills of cutthroat trout. Am J Physiol 277:R631–R639

    PubMed  CAS  Google Scholar 

  • Nordlie FG (1978) The influence of environmental salinity on respiratory oxygen demands in the euryhaline teleost, Ambassis interupta Bleeker. Comp Biochem Physiol 59A:271–274

    Article  CAS  Google Scholar 

  • Nordlie FG (1985) Osmotic regulation in the sheepshead minnow Cyprinodon variegatus Lacepede. J Fish Biol 26:161–170

    Article  Google Scholar 

  • Nordlie FG, Haney DC (1998) Adaptations in salt marsh teleosts to life in waters of varying salinity. It J Zool 65:405–409

    Article  Google Scholar 

  • Nordlie FG, Walsh SJ (1989) Adaptive radiation in osmotic regulatory patterns among three species of cyprinodontids (Teleostei: Atherniomorpha). Physiol Zool 62:1203–1218

    Google Scholar 

  • Nordlie FG, Walsh SJ, Haney DC, Nordlie TF (1991) The influence of ambient salinity on routine metabolism in the teleost Cyprinodon variegatus Lacepede. J Fish Biol 38:115–122

    Article  Google Scholar 

  • Nordlie FG, Haney DC, Walsh SJ (1992) Comparisons of salinity tolerance and osmotic regulatory capabilities in populations of sailfin mollies (Poecilia latipinna) from brackish and freshwaters. Copeia 1992:741–746

    Article  Google Scholar 

  • Ouattara N, Bodinier C, Negre-Sadargues G, D’Cotta H, Messad S, Charmanteir G, Panfili J, Baroiller JF (2009) Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron. Aquauculture 290:155–164

    Article  CAS  Google Scholar 

  • Panfili J, Mbow A, Durand JD, Diop K, Diouf K, Thior D, Ndiaye P, Lae R (2004) Influence of salinity on the life-history traits of the West African black-chinned tilapia (Sarotherodon melanotheron): Comparison between Gambia and Saloum estuaries. Aquat Living Resour 17:65–74

    Article  Google Scholar 

  • Panfili J, Thior D, Ecoutin JM, Ndiaye P, Albaret JJ (2006) Influence of salinity on the size at maturity for fish species reproducing in contrasting West African estuaries. J Fish Biol 69:95–113

    Article  Google Scholar 

  • Perry SF (1998) Relationships between branchial chloride cells and gas transfer in freshwater fish. Comp Biochem Physiol A 119:9–16

    Article  CAS  Google Scholar 

  • Plaut I (2000) Resting metabolic rate, critical swimming speed, and routine activity of the euryhaline cyprinodontid, Aphanius dispar, acclimated to a wide range of salinities. Physiol Biochem Zool 73:590–596

    Article  PubMed  CAS  Google Scholar 

  • Potts WTTW, Fletcher CR, Eddy FB (1973) Analysis of the sodium and chloride fluxes in the flounder Platichthys flesus. J Comp Physiol 82:21–28

    Article  Google Scholar 

  • Sampath-Kumar R, Munro AD, Lee J, Lam TJ (1993) Exogenous cortisol promotes survival of Asian seabass (Lates calcarifer) hatchlings exposed to hypersalinity but not hyposalinity shock. Aquaculture 116:247–255

    Article  CAS  Google Scholar 

  • Sardella B, Cooper J, Gonzalez R, Brauner CJ (2004a) The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromis mossambicus × O. urolepis hornorum) exposed to full-strength and hypersaline seawater. Comp Biochem Physiol A 137:621–629

    Article  Google Scholar 

  • Sardella B, Matey V, Cooper J, Gonzalez R, Brauner CJ (2004b) Physiological, biochemical, and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia (Oreochromis mossambicus × O. urolepis hornorum) exposed to hypersaline water. J Exp Biol 207:1399–1413

    Article  PubMed  CAS  Google Scholar 

  • Scott GR, Richards JG, Forbush B, Isenring P, Schulte PM (2004) Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol Cell Physiol 287:C300–C309

    Article  PubMed  CAS  Google Scholar 

  • Shehadeh ZH, Gordon MS (1969) The role of the intestine in salinity adaptation of the rainbow trout, Salmo gairdneri. Comp Biochem Physiol 30:397–418

    Article  CAS  Google Scholar 

  • Singer TD, Tucker SJ, Marshall WS, Higgins CG (1998) A divergent CFTR homologue: higly regulated salt transport in the euryhaline teleost F. heteroclitus. Am J Physiol Cell Physiol 274:C715–C723

    CAS  Google Scholar 

  • Skadhauge E, Lotan R (1974) Drinking rate and oxygen consumption in the euryhaline teleost Aphanius dispar in waters of high salinity. J Exp Biol 60:547–556

    PubMed  CAS  Google Scholar 

  • Swanson C (1998) Interactive effects of salinity on metabolic rate, activity, growth and osmoregulation in the euryhaline milkfish (Chanos chanos). J Exp Biol 201:3355–3366

    PubMed  Google Scholar 

  • Tine M, de Lorgeril J, Panfili J, Diop K, Bonhomme F, Durand J-D (2007) Growth hormone and prolactin-1 gene transcription in natural populations of the black-chinned tilapia Sarotherodon melanotheron acclimatized to different salinities. Comp Biochem Physiol B 147:541–549

    Article  PubMed  CAS  Google Scholar 

  • Tine M, de Lorgeril J, D’Cotta H, Pepey E, Bonhomme F, Baroiller JF, Durand JD (2008) Transcriptional responses of the black-chinned tilapia Sarotherodon melanotheron to salinity extremes. Mar Genomics 1:37–46

    Article  PubMed  Google Scholar 

  • Tine M, Bonhomme F, McKenzie DJ, Durand JD (2010) Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia Sarotherodon melanotheron, acclimatized toa range of environmental salinities. BMC Ecol 10:11–19

    Article  PubMed  Google Scholar 

  • Towle DW, Gilman ME, Hempel JD (1977) Rapid modulation of gill Na+, K+-dependent ATPase activity during rapid acclimation of the killifish Fundulus heteroclitus to salinity change. J Exp Zool 202:179–186

    Article  PubMed  CAS  Google Scholar 

  • Uchida K, Kaneko T, Miyazaki H, Hasegawa S, Hirano T (2000) Excellent salinity tolerance of Mozambique tilapia (Oreochromis mossambicus): Elevated chloride cell activity in the branchial and opercular epithelia of the fish adapted to concentrated seawater. Zool Sci 17:149–160

    Article  Google Scholar 

  • Valentine DW, Miller R (1969) Osmoregulation in the California killifish, Fundulus parvipinnis. California Fish Game 58:20–25

    Google Scholar 

  • Watanabe S, Kaneko T, Aida K (2005) Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater. J Exp Biol 208:2673–2682

    Article  PubMed  CAS  Google Scholar 

  • Wilson RW, Gilmour K, Henry R, Wood CM (1996) Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid–base balance? J Exp Biol 199:2331–2343

    PubMed  CAS  Google Scholar 

  • Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish—why and how? Biochim Biophys Acta 1566:182–193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Gonzalez.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, R.J. The physiology of hyper-salinity tolerance in teleost fish: a review. J Comp Physiol B 182, 321–329 (2012). https://doi.org/10.1007/s00360-011-0624-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0624-9

Keywords

Navigation