Skip to main content

Advertisement

Log in

Antifreeze proteins in the Antarctic springtail, Gressittacantha terranova

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Antarctic springtails are exemplars of extreme low temperature adaptation in terrestrial arthropods. This paper represents the first examination of such adaptation in the springtail, Gressittacantha terranova. Acclimatization state was measured in field-fresh samples over a 22-day period at the beginning of the austral summer. No evidence of temperature tracking was observed. Mean temperature of crystallization (T c) for all samples was −20.67 ± 0.32°C and the lowest T c recorded was −32.62°C. Ice affinity purification was used to collect antifreeze proteins (AFPs) from springtail homogenate. The purified ice fraction demonstrated both thermal hysteresis activity and recrystallisation inhibition. Growth-melt observations revealed that ice crystals grow normal to the c-axis (basal plane). Reverse-phased HPLC produce one clearly resolved peak (P1) and one compound peak (P2). Mass spectrometry identified the molecular mass of P1 as 8,599 Da. The P1 protein was also the most prominent in P2, although additional peptides of 6–7 KDa were also prominent. The main AFP of the Antarctic springtail, G. terranova has been isolated, although like other AFP-expressing arthropods, it shows evidence of expressing a family of AFPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFP:

Antifreeze protein

HPLC:

High performance liquid chromatography

RI:

Recrystallisation inhibition

T c :

Temperature of crystallization

TH:

Thermal hysteresis

References

  • Bale JS (1993) Classes of insect cold hardiness. Funct Ecol 7:751–753

    Google Scholar 

  • Bale JS (1996) Insect cold hardiness: a matter of life and death. Eur J Entomol 93:369–382

    Google Scholar 

  • Block W, Duman JG (1989) Presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite, Alaskozetes antarcticus. J Exp Zool 250:229–231

    Article  CAS  Google Scholar 

  • Cannon RJC, Block W (1988) Cold tolerance of microarthropods. Biol Rev 63:23–77

    Article  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Ann Rev Physiol 63:327–357

    Article  CAS  Google Scholar 

  • Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50:259–266

    Article  PubMed  CAS  Google Scholar 

  • Graham LA, Davies PL (2005) Glycine-rich antifreeze proteins from snowfleas. Science 310:461

    Article  PubMed  Google Scholar 

  • Graham LA, Liou Y, Walker VK, Davies PL (1997) Hyperactive antifreeze protein from beetles. Nature 388:727–728

    Article  PubMed  CAS  Google Scholar 

  • Grimstone AV, Mullinger AM, Ramsay JA (1968) Further studies on the rectal complex of the mealworm, Tenebrio molitor. Philos. Trans. R. Soc. London Ser B 253:343–382

    Article  Google Scholar 

  • Hawes TC, Couldridge CE, Bale JS, Worland MR, Convey P (2006a) Habitat temperature and the temporal scaling of cold hardening in the high Arctic collembolan, Hypogastrura tullbergi (Schäffer). Ecol Entomol 31:450–459

    Article  Google Scholar 

  • Hawes TC, Bale JS, Convey P, Worland MR (2006b) Ecologically realistic modalities in arthropod supercooling point distributions. Eur J Entomol 103:717–723

    Google Scholar 

  • Hawes TC, Bale JS, Worland MR, Convey P (2008) Trade-offs between microhabitat selection and physiological plasticity in the Antarctic springtail, Cryptopygus antarcticus (Willem). Polar Biol 31:68–689

    Google Scholar 

  • Hawes TC, Torecelli G, Stevens MI (2010) Haplotype diversity in the Antarctic springtail, Gressittacantha terranova, at fine spatial scales—a Holocene twist to a Pliocene tale. Antarct Sci 22:766–773

    Article  Google Scholar 

  • Hopkin SP (1997) Biology of the Springtails. Oxford University Press, Oxford

    Google Scholar 

  • Knight CA (2000) Adding to the antifreeze agenda. Nature 406:249–250

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–280

    Article  PubMed  CAS  Google Scholar 

  • Kuiper MJ, Lankin C, Gauthier SY, Walker VK, Davies PL (2003) Purification of antifreeze proteins by adsorption to ice. Biochem Biophys Res Comm 300:645–648

    Article  PubMed  CAS  Google Scholar 

  • Li N, Andorfer CA, Duman JG (1998) Enhancement of insect antifreeze protein activity by solutes of low molecular mass. J Exp Biol 201:2243–2251

    PubMed  CAS  Google Scholar 

  • Patterson JL, Duman JF (1979) Composition of a protein antifreeze from larvae of the beetle, Tenebrio molitor. J Exp Zool 210:361–367

    Article  CAS  Google Scholar 

  • Ramsay RA (1964) The rectal complex of the mealworm, Tenebrio molitor L. Coleoptera, Tenebrionidae. Philos Trans R Soc London Ser B 248:279–314

    Article  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. PNAS 74:2589–2593

    Article  PubMed  CAS  Google Scholar 

  • Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL (2006) Basis for hyperactivity of antifreeze proteins. Cryobiology 53:229–239

    Article  PubMed  CAS  Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnocks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  PubMed  CAS  Google Scholar 

  • Walters KR, Serianni AS, Sformo T, Barnes BM, Duman JG (2009) A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. PNAS 106:20210–20215

    Article  PubMed  CAS  Google Scholar 

  • Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramlov H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207

    Article  PubMed  CAS  Google Scholar 

  • Worland MR, Block W (2003) Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. J Insect Physiol 49:193–203

    Article  PubMed  CAS  Google Scholar 

  • Worland MR (2005) Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. J Insect Physiol 51:881–894

    Article  PubMed  CAS  Google Scholar 

  • Worland MR, Convey P (2008) The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus. J Insect Physiol 54:1281–1285

    Article  PubMed  CAS  Google Scholar 

  • Wu DW, Duman JG, Cheng CC, Castellino FJ (1991) Purification and characterization of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol 161:271–278

    CAS  Google Scholar 

  • Zachariassen KE, Husby JA (1982) Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867

    Article  Google Scholar 

  • Zettel J (1984) Cold hardiness strategies and thermal hysteresis in Collembola. Rev Ecol Biol Sol 21:189–203

    Google Scholar 

Download references

Acknowledgments

TCH was funded by the Leverhulme Trust. Thanks to Antarctic NZ for logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Hawes.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawes, T.C., Marshall, C.J. & Wharton, D.A. Antifreeze proteins in the Antarctic springtail, Gressittacantha terranova . J Comp Physiol B 181, 713–719 (2011). https://doi.org/10.1007/s00360-011-0564-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0564-4

Keywords

Navigation