Skip to main content
Log in

Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Phosphatidylcholine (PC), the main phospholipid in eukaryotes, is synthesized via two different routes, the phosphatidylethanolamine N-methyl transferase (PEMT) and the CDP-choline pathways. We previously showed in euryhaline fish that salinity impacts the relative contribution of the two pathways for PC biosynthesis, with PEMT pathway being activated in the liver of sea water (SW)-adapted animals. To address the occurrence of such phenomenon in other animals we performed in vivo metabolic studies in two crustacean species: the Chinese crab (Eriocheir sinensis) and the green crab (Carcinus maenas). In both species, the levels of PC and phosphatidylethanolamine in hepatopancreas and hemolymph were not modified by SW-adaptation. In E. sinensis, SW-adaptation activated PC labeling from l-(U-14C)-serine in the hepatopancreas and resulted in an increased ratio of PC specific activities between hemolymph and hepatopancreas. In C. maenas, incorporation of l-(3-3H)-serine and l-(2-14C)-ethanolamine into PC of hepatopancreas was strongly inhibited after acclimation to fresh water (FW). The results show that PC synthesis via the PEMT pathway and its subsequent release into hemolymph are both activated in SW- compared to FW-adapted animals. SW-adaptation also resulted in increased tissue concentrations of betaine and labeling from l-(U-14C)-serine, suggesting that the PEMT-derived PC is used for the synthesis of organic osmolytes. The physiological relevance of these observations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonio Santos E, Eduardo L, Nery M, Augusto Goncalves A, Keller R (1997) Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiol Biochem Zool 70:415–420

    Article  Google Scholar 

  • Blunden G, El Barouni MM, Gordon SM, McLean WFH, Rogers DJ (1981) Extraction, purification and characterization of Dragendorff-positive compounds from some British marine algae. Bot Mar 24:451–456

    Article  CAS  Google Scholar 

  • Bodennec J, Koul O, Aguado I, Brichon G, Zwingelstein G, Portoukalian J (2000) A procedure for fractionation of sphingolipid classes by solid-phase extraction on aminopropyl cartridges. J Lipid Res 41:1524–1531

    PubMed  CAS  Google Scholar 

  • Bogdanov M, Dowhan W (1999) Lipid-assisted protein folding. J Biol Chem 274:36827–36830

    Article  PubMed  CAS  Google Scholar 

  • Chapelle S, Brichon G, Zwingelstein G (1982) Effect of environmental temperature on the incorporation of 3H-ethanolamine into phospholipids of the tissues of the crab Carcinus maenas. J Exp Biol 224:289–297

    CAS  Google Scholar 

  • Charest R, Dunn A (1984) Chromatographic separation of choline, trimethylamine, trimethylamine oxide, and betaine from tissues of marine fish. Anal Biochem 136:421–424

    Article  PubMed  CAS  Google Scholar 

  • Clark ME, Hinke JAM (1981) Studies on water in barnacle muscle fibres. I. The dry weight components of fresh fibres. J Exp Biol 90:33–41

    CAS  Google Scholar 

  • Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    PubMed  CAS  Google Scholar 

  • Cui Z, Vance JE, Chen MH, Voelker DR, Vance DE (1993) Cloning and expression of a novel phosphatidylethanolamine N-methyltransferase. A specific biochemical and cytological marker for a unique membrane fraction in rat liver. J Biol Chem 268:16655–16663

    PubMed  CAS  Google Scholar 

  • de Vooys CG, Geenevasen JA (2002) Biosynthesis and role in osmoregulation of glycine-betaine in the Mediterranean mussel Mytilus galloprovincialis LMK. Comp Biochem Physiol B Biochem Mol Biol 132:409–414

    PubMed  Google Scholar 

  • Deaton LE (2001) Hyperosmotic volume regulation in the gills of the ribbed mussel, Geukensia demissa: rapid accumulation of betaine and alanine. J Exp Mar Bio Ecol 260:185–197

    Article  PubMed  CAS  Google Scholar 

  • DeLong CJ, Shen YJ, Thomas MJ, Cui Z (1999) Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem 274:29683–29688

    Article  PubMed  CAS  Google Scholar 

  • Dittmer JC, Lester RL (1964) A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 15:126–127

    PubMed  CAS  Google Scholar 

  • Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540

    Article  PubMed  CAS  Google Scholar 

  • Dragolovich J (1994) Dealing with salt stress in animal cells: the role and regulation of glycine betaine concentrations. J Exp Zool A Comp Exp Biol 268:139–144

    Article  CAS  Google Scholar 

  • Dragolovich J, Pierce SK (1991) Comparative time course of inorganic and organic osmolyte accumulation as horsehoe crabs (Limulus polyphemus) adapt to high salinity. Comp Biochem Physiol 102A:79–84

    Google Scholar 

  • el Babili M, Brichon G, Zwingelstein G (1996) Sphingomyelin metabolism is linked to salt transport in the gills of euryhaline fish. Lipids 31:385–392

    Article  PubMed  CAS  Google Scholar 

  • Esser K (1965) A thin-layer chromatographic method for the quantitative determination of amino acids and aminosugars in micromeasures. J Chromatogr 18:414–416

    Article  PubMed  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  • Gallazzini M, Ferraris JD, Kunin M, Morris RG, Burg MB (2006) Neuropathy target esterase catalyzes osmoprotective renal synthesis of glycerophosphocholine in response to high NaCl. Proc Natl Acad Sci USA 103:15260–15265

    Article  PubMed  CAS  Google Scholar 

  • Gallazzini M, Ferraris JD, Burg MB (2008) GDPD5 is a glycerophosphocholine phosphodiesterase that osmotically regulates the osmoprotective organic osmolyte GPC. Proc Natl Acad Sci USA 105:11026–11031

    Article  PubMed  CAS  Google Scholar 

  • Goldstein L, Davis EM (1994) Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am J Physiol 267:R426–R431

    PubMed  CAS  Google Scholar 

  • Hitz WD, Rhodes D, Hanson AD (1981) Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves. Plant Physiol 68:814–822

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RL, Stead LM, Devlin C, Tabas I, Brosnan ME, Brosnan JT, Vance DE (2005) Physiological regulation of phospholipid methylation alters plasma homocystein in mice. J Biol Chem 280:28299–28305

    Article  PubMed  CAS  Google Scholar 

  • Kent C (1995) Eukaryotic phospholipid biosynthesis. Annu Rev Biochem 64:315–343

    Article  PubMed  CAS  Google Scholar 

  • Kenyon AJ (1967) The role of the liver in the maintenance of plasma proteins and amino acids in the eel, Anguilla anguilla L., with reference to amino acid deamination. Comp Biochem Physiol 22:169–175

    Article  PubMed  CAS  Google Scholar 

  • Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR, Heistad DD (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98:24–29

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Vance DE (2008) Phosphatidylcholine and choline homeostasis. J Lipid Res 49:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Luvizotto-Santos R, Lee J, Branco Z, Bianchini A, Nery L (2003) Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata dana, 1851 (crustacea-grapsidae). J Exp Zool A Comp Exp Biol 295:200–205

    Article  PubMed  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–950

    Article  PubMed  CAS  Google Scholar 

  • McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD (2001) Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci USA 98:10001–10005

    Article  PubMed  CAS  Google Scholar 

  • Moore S, Stein WH (1954) Procedures for the chromatographic determination of amino acids on four per cent cross-linked sulfonated polystyrene resins. J Biol Chem 211:893–906

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Burg MB (1989) Osmoregulation of glycerophosphorylcholine content of mammalian renal cells. Am J Physiol 257:C795–C801

    PubMed  CAS  Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  PubMed  CAS  Google Scholar 

  • Nuccio ML, McNeil SD, Ziemak MJ, Hanson AD, Jain RK, Selvaraj G (2000) Choline import into chloroplasts limits glycine betaine synthesis in tobacco: analysis of plants engineered with a cloroplastic or a cytosolic pathway. Metab Eng 2:300–311

    Article  PubMed  CAS  Google Scholar 

  • Oliveira GT, da Silva RS (2000) Hepatopancreas gluconeogenesis during hyposmotic stress in crabs Chasmagnathus granulata maintained on high-protein or carbohydrate-rich diets. Comp Biochem Physiol B Biochem Mol Biol 127:375–381

    Article  PubMed  CAS  Google Scholar 

  • Parmegiani Jahn M, Maura Cavagni G, Kaiser D, Kucharski LC (2006) Osmotic effect of choline and glycine betaine on the gills and hepatopancreas of the Chasmagnathus granulata crab submitted to hyperosmotic stress. J Exp Mar Bio Ecol 334:1–9

    Article  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crustacean Biology 15:1–60

    Article  Google Scholar 

  • Perrino LA, Pierce SK (2000a) Betaine aldehyde dehydrogenase kinetics partially account for oyster population differences in glycine betaine synthesis. J Exp Zool 286:238–249

    Article  PubMed  CAS  Google Scholar 

  • Perrino LA, Pierce SK (2000b) Choline dehydrogenase kinetics contribute to glycine betaine regulation differences in chesapeake bay and atlantic oysters. J Exp Zool 286:250–261

    Article  PubMed  CAS  Google Scholar 

  • Peterson DP, Murphy KM, Ursino R, Streeter K, Yancey PH (1992) Effecst of dietary protein and salt on rat renal osmolytes: covariation in urea and GPC contents. Am J Physiol 263:F594–F600

    PubMed  CAS  Google Scholar 

  • Pierce SK, Rowland-Faux LM, O’Brien SM (1992) Different salinity tolerance mechanisms in Atlantic and Chesapeake Bay conspecific oysters: glycine betaine and amino acid pool variations. Mar Biol 113:107–115

    Article  CAS  Google Scholar 

  • Portoukalian J, Meister R, Zwingelstein G (1978) Improved two-dimensional solvent systems for chromatography analysis of polar lipids on thin-layer silica gel 60 precoated plates. J Chromatogram 152:569–574

    Article  CAS  Google Scholar 

  • Renkonen O (1966) Altered fatty acid distribution of glycerophosphatides induced by acetolysis. Lipids 1:160–161

    Article  PubMed  CAS  Google Scholar 

  • Robertson JD (1975) Osmotic constituents of the blood plasma and parietal muscle of Squalus acanthias L. Biol Bull 148:303–319

    Article  PubMed  CAS  Google Scholar 

  • Sangiao-Alvarellos S, Arjona FJ, Martin del Rio MP, Miguez JM, Mancera JM, Soengas JL (2005) Time course of osmoregulatory and metabolic changes during osmotic acclimation in Sparus auratus. J Exp Biol 208:4291–4304

    Article  PubMed  Google Scholar 

  • Schein V, Fernandes Chitto AL, Etges R, Kucharski LC, van Wormhoudt A, Da Silva RS (2005) Effect of hyper or hypo-osmotic conditions on neutral amino acid uptake and oxidation in tissues of the crab Chasmagnathus granulata. Comp Biochem Physiol B Biochem Mol Biol 140:561–567

    Article  PubMed  Google Scholar 

  • Schoffeniels E (1976a) Adaptations with respect to salinity. Biochem Soc Symp 41:179–204

    Google Scholar 

  • Schoffeniels E (1976b) Biochemical approaches to osmoregulation process in crustacea. Pergamon Press, Oxford, pp 107–123

    Google Scholar 

  • Sheridan MA (1988) Lipid dynamics in fish: aspects of absorption, transportation, deposition and mobilization. Comp Biochem Physiol B 90:679–690

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J (1993) Adverse vascular effects of homocystein are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Invest 91:308–318

    Article  PubMed  CAS  Google Scholar 

  • Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566:115–120

    Article  PubMed  CAS  Google Scholar 

  • Treberg JR, Driedzic WR (2007) The accumulation and synthesis of betaine in winter skate (Leucoraja ocellata). Comp Biochem Physiol A Mol Integr Physiol 147:475–483

    Article  PubMed  Google Scholar 

  • Tseng YC, Hwang PP (2008) Some insights into energy metabolism for osmoregulation in fish. Comp Biochem Physiol C Toxicol Pharmacol 148:419–429

    Article  PubMed  Google Scholar 

  • Vance DE, de Kruijff B (1980) The possible functional significance of phosphatidylethanolamine methylation. Nature 288:277–279

    Article  PubMed  CAS  Google Scholar 

  • Vance DE, Ridgway ND (1988) The methylation of phosphatidylethanolamine. Prog Lipid Res 27:61–79

    Article  PubMed  CAS  Google Scholar 

  • Walkey CJ, Yu L, Agellon LB, Vance DE (1998) Biochemical and evolutionary significance of phospholipid methylation. J Biol Chem 273:27043–27046

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Dudman NP, Wilcken DE (1993) Effects of homocysteine and related compounds on prostacyclin production by cultured human vascular endothelial cells. Thromb Haemost 70:1047–1052

    PubMed  CAS  Google Scholar 

  • Yancey PH (2001) Protein, osmolytes and water stress. Am Zool 41:699–709

    Article  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Zeisel SH, Blusztajn JK (1994) Choline and human nutrition. Annu Rev Nutr 14:269–296

    Article  PubMed  CAS  Google Scholar 

  • Zeisel SH, Mar MH, Howe JC, Holden JM (2003) Concentrations of choline-containing compounds and betaine in common foods. J Nutr 133:1302–1307

    PubMed  CAS  Google Scholar 

  • Zhang J, Blusztajn JK, Zeisel SH (1992) Measurement of the formation of betaine aldehyde and betaine in rat liver mitochondria by a high pressure liquid chromatography-radioenzymatic assay. Biochim Biophys Acta 1117:333–339

    Google Scholar 

  • Zhu X, Song J, Mar MH, Edwards LJ, Zeisel SH (2003) Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochem J 370:987–993

    Article  PubMed  CAS  Google Scholar 

  • Zwingelstein G, Bodennec J (1998) Phospholipid metabolism in euryhaline fish and crustaceans. Effects of environmental salinity and temperature. Recent Res Develop Lipds Res 2:39–52

    CAS  Google Scholar 

  • Zwingelstein G, Bodennec J, Brichon G, Abdul-Malak N, Chapelle S, el Babili M (1998a) Formation of phospholipid nitrogenous bases in euryhaline fish and crsutaceans. I. Effects of salinity and temperature on synthesis of phosphatidylserine and its decarboxylation. Comp Biochem Physiol 120B:467–473

    CAS  Google Scholar 

  • Zwingelstein G, Brichon G, Bodennec J, Chapelle S, Abdul-Malak N, el Babili M (1998b) Formation of phospholipid nitrogenous bases in euryhaline fish and crustaceans. II. Phosphatidylethanolamine methylation in liver and hepatopancreas. Comp Biochem Physiol 120B:475–482

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bodennec.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athamena, A., Brichon, G., Trajkovic-Bodennec, S. et al. Salinity regulates N-methylation of phosphatidylethanolamine in euryhaline crustaceans hepatopancreas and exchange of newly-formed phosphatidylcholine with hemolymph. J Comp Physiol B 181, 731–740 (2011). https://doi.org/10.1007/s00360-011-0562-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0562-6

Keywords

Navigation