Skip to main content

Advertisement

Log in

Chronic hypoxia and chronic hypercapnia differentially regulate an NMDA-sensitive component of the acute hypercapnic ventilatory response in the cane toad (Rhinella marina)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study addressed the hypotheses that exposure to chronic hypoxia (CH) and chronic hypercapnia (CHC) would modify the acute hypercapnic ventilatory response in the cane toad (Rhinella marina; formerly Bufo marinus or Chaunus marinus) and its regulation by NMDA-mediated processes. Cane toads were exposed to 10 days of CH (10% O2) or CHC (3.5% CO2) followed by acute in vivo hypercapnic breathing trials, conducted before and after an injection of the NMDA-receptor channel blocker, MK801 into the dorsal lymph sac. CH, CHC and MK801 did not alter ventilation under acute normoxic normocapnic conditions. CH blunted the increase in breathing frequency during acute hypercapnia while CHC had no effect. The effect of CH on breathing frequency was mediated by a decrease in the number of breaths per breathing episode. Neither CH nor CHC altered breath area (volume). MK801 augmented breathing frequency (via an increase in breaths per episode) and total ventilation during acute hypercapnia in control toads and toads exposed to CH; there was no effect of MK801 on the increase in breathing frequency or total ventilation, during acute hypercapnia in toads exposed to CHC. The results indicate that CH and CHC differentially alter breathing pattern. Furthermore, they indicate an absence of NMDA-mediated glutamatergic tone during normoxic normocapnia but that NMDA-mediated processes attenuate the increase in breathing frequency during acute hypercapnia under control conditions and following CH but not following CHC. Given that MK801 was administered systemically, the effects could be acting anywhere in the reflex pathway from CO2-sensing to respiratory motor output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NMDA:

N-methyl-d-aspartate

References

  • Boggs DF, Kilgore DL Jr, Birchard GF (1984) Respiratory physiology of burrowing mammals and birds. Comp Biochem Physiol A 77:1–7

    Article  Google Scholar 

  • Bonham AC (1995) Neurotransmitters in the CNS control of breathing. Respir Physiol 101:219–230

    Article  PubMed  CAS  Google Scholar 

  • Boutilier RG, Randall DJ, Shelton G, Toews DP (1979a) Acid-base relationships in the blood of the toad. Bufo marinus. I. The effects of environmental CO2. J Exp Biol 82:331–344

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Randall DJ, Shelton G, Toews DP (1979b) Acid-base relationships in the blood of the toad, Bufo marinus. III. The effects of burrowing. J Exp Biol 82:357–365

    PubMed  CAS  Google Scholar 

  • Branco LG, Glass ML, Hoffmann A (1992) Central chemoreceptor drive to breathing in unanesthetized toads, Bufo paracnemis. Respir Physiol 87(2):195–204

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge WJ, Tester JR (1961) Growth, local movements and hibernation of the Manitoba toad, Bufo hemiophrys. Ecol 42(4):637–646

    Article  Google Scholar 

  • Burton MD, Kazemi H (2000) Neurotransmitters in central respiratory control. Respir Physiol 122:111–121

    Article  PubMed  CAS  Google Scholar 

  • Coates EL (2001) Olfactory CO2 chemoreceptors. Respir Physiol 129:219–229

    Article  PubMed  CAS  Google Scholar 

  • Coates EL, Ballam GO (1990) Olfactory receptor response to CO2 in bullfrogs. Am J Physiol 27:R1207–R1212

    Google Scholar 

  • Gargaglioni LH, Branco LGS (2003) Role of glutamate in the nucleus isthmi on the hypoxia- and hypercarbia-induced hyperventilation in toads. Respir Physiol Neurobiol 135:47–58

    Article  PubMed  CAS  Google Scholar 

  • Gargaglioni LH, Branco LGS (2004) Nucleus isthmi and control of breathing in amphibians. Respir Physiol Neurobiol 143:177–186

    Article  PubMed  Google Scholar 

  • Gargaglioni LH, Coimbra NC, Branco LGS (2002) Chemical lesions of the nucleus isthmi increase the hypoxic and hypercarbic drive to breathing of toads. Respir Physiol Neurobiol 132:289–299

    Article  PubMed  Google Scholar 

  • Gheshmy A, Vukelich R, Noronha A, Reid SG (2006) Chronic hypercapnia modulates respiratory-related central pH/CO2 chemoreception in an amphibian, Bufo marinus. J Exp Biol 209(6):1135–1146

    Article  PubMed  Google Scholar 

  • Gheshmy A, Anari A, Besada D, Reid SG (2007) Afferent input modulates the chronic hypercapnia-induced increase in respiratory-related central pH/CO2 chemosensitivity in the cane toad (Bufo marinus). J Exp Biol 210:227–237

    Article  PubMed  Google Scholar 

  • Gozal D, Gozal E, Simakajornboon N (2000) Signalling pathways of the acute hypoxic ventilatory response in the nucleus tractus solitarius. Respir Physiol 121:209–221

    Article  PubMed  CAS  Google Scholar 

  • Hoop B, Beagle JL, Maher TJ, Kazemi H (1999) Brainstem amino acid neurotransmitters and hypoxic ventilatory response. Respir Physiol 118:117–129

    Article  PubMed  CAS  Google Scholar 

  • James SM, Little EE, Semlitsch RD (2004) The effect of soil composition and hydration on the bioavailability and toxicity of cadmium to hibernating juvenile American toads (Bufo americanus). Environ Poll 132:523–532

    Article  CAS  Google Scholar 

  • Kashiwagi K, Pahk AJ, Masuko T, Igarashi K, Williams K (1997) Block and modulation of N-methyl-d-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol Pharmacol 52:701–713

    PubMed  CAS  Google Scholar 

  • Kinkead R, Milsom WK (1994) Chemoreceptors and control of episodic breathing in the bullfrog (Rana catesbeiana). Respir Physiol 95:81–98

    Article  PubMed  CAS  Google Scholar 

  • Kinkead R, Milsom WK (1996) CO2-sensitive olfactory and pulmonary receptor modulation of episodic breathing in bullfrogs. Am J Physiol 270:R134–R144

    PubMed  CAS  Google Scholar 

  • Kinkead R, Harris MB, Milsom WK (1997) The role of the nucleus isthmi in respiratory pattern formation in bullfrogs. J Exp Biol 200:1781–1793

    PubMed  CAS  Google Scholar 

  • Kuhlman W, Fedde M (1979) Intrapulmonary receptors in the bullfrog: sensitivity to CO2. J Comp Physiol 132:69–75

    Article  Google Scholar 

  • Kuhnen G (1986) O2 and CO2 concentrations in burrows of euthermic and hibernating golden hamsters. Comp Biochem Physiol A 84:517–522

    Article  PubMed  CAS  Google Scholar 

  • Maxwell BA (2000) Management of Montana’s amphibians: a review of factors that may present a risk to population viability and accounts on the identification, distribution, taxonomy, habitat use, natural history and the status and conservation of individual species. Report to USFS Region 1 (43-0343-0-0224)

  • McAneney J, Reid SG (2007) Chronic hypoxia attenuates central respiratory-related pH/CO2 chemosensitivity in the cane toad. Respir Physiol Neurobiol 156(3):266–275

    Article  PubMed  CAS  Google Scholar 

  • McAneney J, Gheshmy A, Uthayalingam S, Reid SG (2006) Chronic hypoxia modulates NMDA-mediated regulation of the hypoxic ventilatory response in an amphibian, Bufo marinus. Respir Physiol Neurobiol 153(1):23–38

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK (2002) Phylogeny of CO2/H+ chemoreception in vertebrates. Respir Physiol Neurobiol 131:29–41

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK, Jones DR (1977) Carbon dioxide sensitivity of pulmonary receptors in the frog. Experientia 33:1167–1168

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK, Reid SG, Meier JT, Kinkead R (1999) Central respiratory pattern generation in the bullfrog, Rana catesbeiana. Comp Biochem Physiol A 124:253–264

    Article  CAS  Google Scholar 

  • Milsom WK, Abe AS, Andrade DV, Tattersall GJ (2004) Evolutionary trends in airway CO2/H+ chemoreception. Respir Physiol Neurobiol 144:191–202

    Article  PubMed  CAS  Google Scholar 

  • Noronha-de-Souza CR, Bicego KC, Michel G, Glass ML, Branco LG, Gargaglioni LH (2006) Locus coeruleus is a central chemoreceptive site in toads. Am J Physiol 291(4):R997–R1006

    CAS  Google Scholar 

  • Ohtake PJ, Torres JE, Gozal YM, Graff GR, Gozal D (1998) NMDA receptors mediate peripheral chemoreceptor afferent input in the conscious rat. J Appl Physiol 84(3):853–861

    PubMed  CAS  Google Scholar 

  • Pinder AW, Storey KB, Ultsch GR (1992) Estivation and hibernation. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibia. University of Chicago Press, Chicago, pp 250–274

    Google Scholar 

  • Powell F, Milsom W, Mitchell G (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–145

    Article  PubMed  CAS  Google Scholar 

  • Reid SG (2006) Chemoreceptor and pulmonary stretch receptor interactions within amphibian respiratory control systems. Respir Physiol Neurobiol 154:153–164

    Article  PubMed  CAS  Google Scholar 

  • Reid SG, Powell FL (2005) Effects of chronic hypoxia on MK-801-induced changes in the acute hypoxic ventilatory response. J Appl Physiol 99(6):2108–2114

    Article  PubMed  CAS  Google Scholar 

  • Russell AP, Bauer AM (1993) The amphibians and reptiles of Alberta. University of Alberta Press, Edmonton

    Google Scholar 

  • Sakakibara Y (1978) Localization of CO2 sensor related to the inhibition of the bullfrog respiration. Jpn J Physiol 28:721–735

    Article  PubMed  CAS  Google Scholar 

  • Schaefer VH, Sadlier RMFS (1979) Concentrations of carbon dioxide and oxygen in mole tunnels. Acta Theriologica 24:267–276

    Google Scholar 

  • Smatresk NJ (1990) Chemoreceptor modulation of endogenous respiratory rhythms in vertebrates. Am J Physiol 259(5):R887–R897

    PubMed  CAS  Google Scholar 

  • Smatresk N, Smits A (1991) Effects of central and peripheral chemoreceptor stimulation on ventilation in the marine toad, Bufo marinus. Respir Physiol 83:223–238

    Article  PubMed  CAS  Google Scholar 

  • Soto-Arape I, Burton M, Kazemi H (1995) Central neurotransmitters and the hypoxic ventilatory response. Am J Respir Crit Care Med 151:1113–1120

    PubMed  CAS  Google Scholar 

  • Storey KB, Storey JM (1986) Freeze tolerance and intolerance as strategies of winter survival in terrestrially hibernating animals. Comp Biochem Physiol A 83(4):613–617

    Article  PubMed  CAS  Google Scholar 

  • Taylor B, Harris M, Coates E, Gdovin M, Leiter J (2003a) Central CO2 chemoreception in developing bullfrogs: anomalous response to acetazolamide. J Appl Physiol 94:1204–1212

    PubMed  CAS  Google Scholar 

  • Taylor B, Harris M, Leiter J, Gdovin M (2003b) Ontogeny of central CO2 chemoreception: chemosensitivity in the ventral medulla of developing bullfrogs. Am J Physiol 285:R1461–R1472

    CAS  Google Scholar 

  • Toews DP, Macintyre D (1978) Respiration and circulation in an apodan amphibian. Can J Zool 56:998–1004

    Article  CAS  Google Scholar 

  • Van Gelder JJ, Olders JHJ, Bosch JWG, Starmans PW (1986) Behaviour and body temperature of hibernating common toads Bufo bufo. Holarctic Ecol 9:225–228

    Google Scholar 

  • West NH, Topor ZL, Van Vliet BN (1987) Hypoxemic threshold for lung ventilation in the toad. Respir Physiol 70(3):377–390

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Discovery and Research Tools grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to SGR. Equipment was also provided by grants from the Canadian Foundation for Innovation (CFI), the Ontario Innovation Trust (OIT) and the Ontario Thoracic Society (University of Toronto Block Term Grant). AG was the recipient of an NSERC undergraduate summer scholarships and an Ontario Graduate Scholarship. All experiments conform to the guidelines established by the Canadian Council for Animal Care and were in full compliance with Canadian law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Reid.

Additional information

Communicated by H.V. Carey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McAneney, J., Gheshmy, A., Manga, J. et al. Chronic hypoxia and chronic hypercapnia differentially regulate an NMDA-sensitive component of the acute hypercapnic ventilatory response in the cane toad (Rhinella marina). J Comp Physiol B 181, 793–805 (2011). https://doi.org/10.1007/s00360-011-0556-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0556-4

Keywords

Navigation