Skip to main content

Anoxic survival of the Pacific hagfish (Eptatretus stoutii)

Abstract

It is not known how the Pacific hagfish (Eptatretus stoutii) can survive extended periods of anoxia. The present study used two experimental approaches to examine energy use during and following anoxic exposure periods of different durations (6, 24 and 36 h). By measuring oxygen consumption prior to anoxic exposure, we detected a circadian rhythm, with hagfish being active during night and showing a minimum routine oxygen consumption (RMR) during the daytime. By measuring the excess post-anoxic oxygen consumption (EPAOC) after 6 and 24 h it was possible to mathematically account for RMR being maintained even though heme stores of oxygen would have been depleted by the animal’s metabolism during the first hours of anoxia. However, EPAOC after 36 h of anoxia could not account for RMR being maintained. Measurements of tissue glycogen disappearance and lactate appearance during anoxia showed that the degree of glycolysis and the timing of its activation varied among tissues. Yet, neither measurement could account for the RMR being maintained during even the 6-h anoxic period. Therefore, two independent analyses of the metabolic responses of hagfish to anoxia exposure suggest that hagfish utilize metabolic rate suppression as part of the strategy for longer-term anoxia survival.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ANOVA:

Analysis of variance

°C:

Degree celsius

EPAOC:

Excess post-anoxic oxygen consumption

\( \dot{M}{\text{O}}_{2} \) :

Metabolic rate (rate of O2 consumption)

MRS:

Metabolic rate suppression

PO2:

Partial pressure of O2

RMR:

Routine metabolic rate

References

  • Arthur PG, Franklin CE, Cousins KL, Thorarensen H, Hochachka PW, Farrell AP (1997) Energy turnover in the normoxic and anoxic turtle heart. Comp Biochem Physiol A 117:121–126

    Article  CAS  Google Scholar 

  • Axelsson M, Farrell AP, Nilsson S (1990) Effects of hypoxia and drugs on the cardiovascular dynamics of the Atlantic hagfish Myxine glutinosa. J Exp Biol 151:297–316

    CAS  Google Scholar 

  • Baldwin J, Davison W, Forster ME (1991) Anaerobic glycolysis in the dental plate retractor muscles of the New Zealand hagfish Eptatretus cirrhatus during feeding. J Exp Zool 260:295–301

    Article  CAS  Google Scholar 

  • Beall RJ, Privitera CA (1973) Effects of cold exposure on the cardiac metabolism of the turtle Psudemys (Chrysemys) picta. Am J Physiol 224:435–441

    PubMed  CAS  Google Scholar 

  • Bergmeyer HU (1983) Methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Bernier NJ, Harris J, Lessard J, Randall DJ (1996a) Adenosine receptor blockade and hypoxia-tolerance in rainbow trout and Pacific hagfish. I. Effects on anaerobic metabolism. J Exp Biol 199:485–495

    PubMed  CAS  Google Scholar 

  • Bernier NJ, Fuentes J, Randall DJ (1996b) Adenosine receptor blockade and hypoxia-tolerance in rainbow trout and Pacific hagfish. II. Effects on plasma catecholamines and erythrocytes. J Exp Biol 199:497–507

    PubMed  CAS  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Ann Rev Physiol 69:147–170

    Article  Google Scholar 

  • Borsheim E, Knardahl S, Hostmark AT, Bahr R (1998) Adrenergic control of post-exercise metabolism. Acta Physiol Scand 162:313–323

    Article  PubMed  CAS  Google Scholar 

  • Brauner GJ, Berenbrink M (2007) Gas transport and exchange. In: McKenzie DJ, Farrell AP, Brauner CJ (eds) Primitive fishes. Academic Press, San Diego, pp 213–282

    Google Scholar 

  • Bushnell PG, Jones DR, Steffensen JF, Schurmann H (1994) Exercise metabolism in 2 species of cod in Arctic waters. Polar Biol 14:43–48

    Article  Google Scholar 

  • Busk M, Boutilier RG (2005) Metabolic arrest and its regulation in anoxic eel hepatocytes. Physiol Biochem Zool 78:926–936

    Article  PubMed  CAS  Google Scholar 

  • Cox GK, Sandblom E, Farrell AP (2010) Cardiac responses to anoxia in the Pacific hagfish, Eptatretus Stoutii. J Exp Biol 213:3692–3698

    Article  PubMed  Google Scholar 

  • Davison W, Baldwin J, Davie PS, Forster ME, Satchell GH (1990) Exhausting exercise in the hagfish, Eptatretus cirrhatus: the anaerobic potential and the appearance of lactic acid in the blood. Comp Biochem Physiol A 95:585–589

    Article  Google Scholar 

  • Daw JC, Wenger DP, Berne RM (1967) Relationship between cardiac glycogen and tolerance to anoxia in the western painted turtle. Chrysemys picta bellii. Comp Biochem Physiol 22:69–73

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Stecyk JAW (2007) The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp Biochem Physiol A 147:300–312

    Article  CAS  Google Scholar 

  • Forster ME (1990) Confirmation of the low metabolic rate of hagfish. Comp Biochem Physiol A 96:113–116

    Article  Google Scholar 

  • Forster ME (1991) Myocardial oxygen-consumption and lactate release by the hypoxic hagfish heart. J Exp Biol 156:583–590

    Google Scholar 

  • Forster ME, Axelsson M, Farrell AP, Nilsson S (1991) Cardiac function and circulation in hagfishes. Can J Zool 69:1985–1992

    Article  Google Scholar 

  • Forster ME, Davison W, Axelsson M, Farrell AP (1992) Cardiovascular responses to hypoxia in the hagfish, Eptatretus cirrhatus. Respir Physiol 88:373–386

    Article  PubMed  CAS  Google Scholar 

  • Forster ME, Russell MJ, Hambleton DC, Olson KR (2001) Blood and extracellular fluid volume in whole body and tissues of the Pacific hagfish, Eptatretus stoutii. Physiol Biochem Zool 74:750–756

    Article  PubMed  CAS  Google Scholar 

  • Foster JM, Forster ME (2007) Changes in plasma catecholamine concentration during salinity manipulation and anaesthesia in the hagfish Eptatretus cirrhatus. J Comp Physiol B 177:41–47

    Article  PubMed  CAS  Google Scholar 

  • Foster GD, Zhang J, Moon TW (1993) Carbohydrate metabolism and hepatic zonation in the Atlantic hagfish, Myxine glutinosa liver: effects of hormones. Fish Physiol Biochem 12:211–219

    Article  CAS  Google Scholar 

  • Gaesser GA, Brooks GA (1984) Metabolic bases of excess post-exercise oxygen-consumption—a review. Med Sci Sports Exerc 16:29–43

    PubMed  CAS  Google Scholar 

  • Gesser H (2002) Mechanical performance and glycolytic requirement in trout ventricular muscle. J Exp Biol 293:360–367

    CAS  Google Scholar 

  • Guppy M, Hulbert WC, Hochachka PW (1979) Metabolic sources of heat and power in tuna muscles. II: enzyme and metabolite profiles. J Exp Biol 82:303–320

    PubMed  CAS  Google Scholar 

  • Hancock TV, Gleeson TT (2008) Contributions to elevated metabolism during recovery: dissecting the excess postexercise oxygen consumption (EPOC) in the desert iguana (Dipsosaurus dorsalis). Physiol Biochem Zool 81:1–13

    Article  PubMed  CAS  Google Scholar 

  • Hansen CA, Sidell BD (1983) Atlantic hagfish cardiac-muscle—metabolic basis of tolerance to anoxia. Am J Physiol 244:R356–R362

    PubMed  CAS  Google Scholar 

  • Hedrick MS, Duffield DA, Cornell LH (1986) Blood-viscosity and optimal hematocrit in a deep-diving mammal, the northern elephant seal (Mirounga angustirostris). Can J Zool 64:2081–2085

    Google Scholar 

  • Herbert CV, Jackson DC (1985) Temperature effects on the responses to prolonged submergence in the turtle Chrysemys picta bellii. II. Metabolic-rate, blood acid–base and ionic changes, and cardiovascular function in aerated and anoxic water. Physiol Zool 58:670–681

    Google Scholar 

  • Hill AV, Lupton H (1923) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med 16:135–171

    CAS  Google Scholar 

  • Hochachka PW (1980) Living without oxygen: closed and open systems in hypoxia tolerance. Harvard University Press, Cambridge

    Google Scholar 

  • Hochachka PW, Somero G (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford

    Google Scholar 

  • Hochachka PW, Buck LT, Doll CJ, Land SC (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93:9493–9498

    Article  PubMed  CAS  Google Scholar 

  • Hyvärinen H, Holopainen IJ, Piironen J (1985) Anaerobic wintering of crucian carp (Carassius carassius L.). I. Annual dynamics of glycogen reserves in nature. Comp Biochem Physiol A 82:797–803

    Article  Google Scholar 

  • Jackson DC (2000) How a turtle’s shell helps it survive prolonged anoxic acidosis. News Physiol Sci 15:181–185

    PubMed  CAS  Google Scholar 

  • Jackson DC, Ultsch GR (2010) Physiology of hibernation under the ice by turtles and frogs. J Exp Zool 313A:311–327

    Article  CAS  Google Scholar 

  • Johansson D, Nilsson GE, Törnblom E (1995) Effects of anoxia on energy metabolism in crucian carp brain slices studied with micro calorimetry. J Exp Biol 198:853–859

    PubMed  Google Scholar 

  • Johnston IA, Bernard LM (1983) Utilization of the ethanol producing pathway in carp following exposure to anoxia. J Exp Biol 104:73–78

    CAS  Google Scholar 

  • Lesser MP, Martini FH, Heiser JB (1997) Ecology of the hagfish, Myxine glutinosa L in the Gulf of Maine. I. Metabolic rates and energetics. J Exp Mar Biol Ecol 208:215–225

    Article  Google Scholar 

  • Macey DJ, Clarke LM, Potter IC (1991) Basal oxygen consumption, ventilatory frequency and heart rate during the protracted spawning run of the southern hemisphere lamprey Geotria australis. J Comp Physiol B 161:525–531

    Article  Google Scholar 

  • Mandic M, Todgham AE, Richards JG (2009) Mechanisms and evolution of hypoxia tolerance in fish. Proc Roy Soc B-Biol Sci 276:735–744

    Article  CAS  Google Scholar 

  • Martini FH (1998) The ecology of hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman and Hill, London, pp 57–77

    Google Scholar 

  • Munz FW, Morris RW (1965) Metabolic rate of hagfish Eptatretus stoutii (Lockington 1878). Comp Biochem Physiol 16:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nilsson GE (1990) Long-term anoxia in crucian carp—changes in the levels of amino-acid and monoamine neurotransmitters in the brain, catecholamines in chromaffin tissue, and liver–glycogen. J Exp Biol 150:295–320

    PubMed  CAS  Google Scholar 

  • Nilsson GE, Östlund-Nilsson S (2008) Does size matter for hypoxia tolerance in fish? Biol Rev 83:173–189

    Article  PubMed  Google Scholar 

  • Packard MJ, Packard GC (2005) Patterns of variation in glycogen, free glucose and lactate in organs of supercooled hatchling painted turtles (Chrysemys picta). J Exp Biol 208:3169–3176

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Fritsche R, Thomas S (1993) Storage and release of catecholamines from the chromaffin tissue of the Atlantic hagfish Myxine glutinosa. J Exp Biol 183:165–184

    CAS  Google Scholar 

  • Reeves RB (1963) Control of glycogen utilization and glucose uptake in the anaerobic turtle heart. Am J Physiol 205:23–29

    PubMed  CAS  Google Scholar 

  • Richards JG, Heigenhauser GJF, Wood CM (2002) Lipid oxidation fuels recover from exhaustive exercise in white muscle of a rainbow trout. Am J Physiol Regul Integr Comp Physiol 282:R89–R99

    PubMed  CAS  Google Scholar 

  • Richards JG, Sardella BA, Schulte PM (2008) Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure. Am J Physiol Regul Integr Comp Physiol 295:R979–R990

    Article  PubMed  CAS  Google Scholar 

  • Rolfe DFS, Brand MD (1996) Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol Cell Physiol 40:C1380–C1389

    Google Scholar 

  • Ruben JA, Bennett AF (1980) Antiquity of the vertebrate pattern of activity metabolism and its possible relation to the vertebrate origins. Nature 286:886–888

    Article  PubMed  CAS  Google Scholar 

  • Shoubridge EA, Hochachka PW (1980) Ethanol: novel end product in the vertebrate anaerobic metabolism. Science 209:308–309

    Article  PubMed  CAS  Google Scholar 

  • Speers-Roesch B, Sandblom E, Lau GY, Farrell AP, Richards JG (2010) Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia. Am J Physiol Comp Physiol 298:R104–R119

    CAS  Google Scholar 

  • Stecyk JAW, Stenslokken KO, Farrell AP, Nilsson GE (2004) Maintained cardiac pumping in anoxic crucian carp. Science 306:77

    Article  PubMed  CAS  Google Scholar 

  • Steffensen JF (1989) Some errors in respirometry of aquatic breathers—how to avoid and correct for them. Fish Physiol Biochem 6:49–59

    Article  Google Scholar 

  • Steffensen JF, Johansen K, Sindberg CD, Sørensen JH, Møller JH (1984) Ventilation and oxygen consumption in the hagfish, Myxine glutionsa L. J Exp Mar Biol Ecol 84:173–178

    Article  Google Scholar 

  • van Ginneken VJT, van Den Thillart GE, Muller HJ, van Deuresn S, Onderwater M, Visee J, Hopmans V, van Vliet G, Nicolay K (1999) Phosphorylation state of red and white muscle in tilapia during graded hypoxia: an in vivo (31)P-NMR study. Am J Physiol 277:R1501–R1512

    PubMed  Google Scholar 

  • van Ginneken VJT, Onderwater M, Olivar OL, van Den Thillart GE (2001) Metabolic depression and investication of glucose/ethanol convertion in the European eel (Anguilla Anguilla Linnaeus 1758) during anaerobiosis. Thermochim Acta 373:23–30

    Article  Google Scholar 

  • van Waversveld J, Addink ADF, van den Thillart G, Smit H (1988) Direct calorimetry on free swimming goldfish at different oxygen levels. J Therm Anal 33:1019–1026

    Article  Google Scholar 

  • van Waversveld J, Addink ADF, van den Thillart G (1989) Simultaneous direct and indirect calorimetry on normoxic and anoxic goldfish. J Exp Biol 142:325–335

    Google Scholar 

  • Vornanen M (1994) Seasonal adaptation of crucian carp (Carassius carassius L.) heart: glycogen stores and lactate dehydrogenase activity. Can J Zool 77:433–442

    Article  Google Scholar 

  • Warren D, Jackson D (2008) Lactate metabolism in anoxic turtles: an integrative review. J Comp Physiol B 178:133–148

    Article  PubMed  CAS  Google Scholar 

  • Wells RMG, Forster ME (1989) Dependence of blood-viscosity on hematocrit and shear rate in a primitive vertebrate. J Exp Biol 145:483–487

    Google Scholar 

  • Wells RMG, Forster ME, Davison W, Taylor HH, Davie PS, Satchell GH (1986) Blood-oxygen transport in the free-swimming hagfish, Eptatretus cirrhatus. J Exp Biol 123:43–53

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSERC Canada Discovery grants awarded to Anthony P. Farrell and Jeffrey G. Richards. We thank Janice Oaks at DFO and Bruce Cameron at the Bamfield Marine Science Centre for assistance with fish care, Dan Baker, UBC, blood pH measurements, M. Mandic and G. Lau, UBC, for instruction on metabolite assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina K. Cox.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cox, G.K., Sandblom, E., Richards, J.G. et al. Anoxic survival of the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 181, 361–371 (2011). https://doi.org/10.1007/s00360-010-0532-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-010-0532-4

Keywords

  • Anoxia
  • Routine metabolic rate
  • Excess post-anoxic oxygen consumption
  • Metabolic rate suppression
  • Lactate
  • Glucose
  • ATP