Skip to main content
Log in

mRNA expression analysis of the physiological responses to ammonia infusion in rainbow trout

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We recently reported that tissue levels of Rhesus (Rh) mRNA in rainbow trout changed in response to high-external ammonia (HEA). To investigate whether or not these changes could be due to elevated plasma ammonia levels, we infused rainbow trout for 12 h with 140 mmol L−1 NH4HCO3, or with 140 mmol L−1 NaCl as a control for the effects of infusion. We also analyzed the effects of dorsal aortic catheterization alone, without infusion. Catheterization alone resulted in an elevated ammonia excretion rate, a downregulation of Rhbg mRNA in the brain, and mRNA upregulations of Rhbg, Rhcg1, and Rhcg2 in the gill, Rhbg and Rhcg1 in the skin, and Rhag in the erythrocytes. In NH4HCO3-infused fish, plasma cortisol peaked at 6 h, erythrocyte Rhag mRNA was downregulated, gill Rhbg, Rhcg1, and Rhcg2 mRNA were upregulated, and skin Rhbg mRNA was also upregulated. NaCl infusion resulted in elevated plasma ammonia and ammonia excretion rates as well as gill mRNA upregulations of Rhbg, carbonic anhydrase, NHE2, H+-ATPase, Na+/K+-ATPase. Taken together, the results indicated that infusion of NH4HCO3 induced a similar pattern of Rh transcript changes as that seen when fish were exposed to HEA. Second, catheterization alone, as well as isotonic NaCl infusion, significantly altered mRNA levels, highlighting the necessity for careful data interpretation and inclusion of appropriate controls for gene expression studies in fish that have undergone anaesthesia/surgery and infusion procedures. Finally, elevated plasma ammonia and cortisol may both be involved in the signaling mechanism for Rh gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA, Devuyst O, Marini AM (2008) A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456:339–343

    Article  PubMed  CAS  Google Scholar 

  • Bry C (1982) Daily variations in plasma cortisol levels of individual female rainbow trout Salmo gairdneri: evidence for a post-feeding peak in well-adapted fish. Gen Comp Endocrin 48:462–468

    Article  CAS  Google Scholar 

  • Bucking C, Wood CM (2008) The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J Exp Biol 211:2533–2541

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  PubMed  CAS  Google Scholar 

  • Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  CAS  Google Scholar 

  • Cameron JN, Heisler N (1983) Studies of ammonia in the rainbow trout: physico-chemical parameters, acid–base behaviour and respiratory clearance. J Exp Biol 105:107–125

    CAS  Google Scholar 

  • Cartron J-P (2008) Blood group antigens structure and function: recent advances (2008) Hematology Education: the education program for the annual congress of the European Hematology Association, vol 2, pp 158–174

  • Chan DKA, Woo NYS (1978) Effect of cortisol on the metabolism of the eel, Anguilla japonica. Gen Comp Endocrinol 35:205–215

    Article  PubMed  CAS  Google Scholar 

  • Constable PD (2003) Hyperchloremic acidosis: the classic examples of strong ion acidosis. Anesth Analg 96:919–922

    Article  PubMed  CAS  Google Scholar 

  • Curtis BJ, Wood CM (1992) Renal and urinary bladder responses of trout to isosmotic NaCl and NaHCO3 loading. J Exp Biol 173:181–203

    Google Scholar 

  • DeBoeck G, Alsop D, Wood CM (2001) Cortisol effects on aerobic and anaerobic metabolism, nitrogen excretion, and whole-body composition in juvenile rainbow trout. Physiol Biochem Zool 74:858–868

    Article  CAS  Google Scholar 

  • Eddy FB (2005) Ammonia in estuaries and effects on fish. J Fish Biol 67:1495–1513

    Article  CAS  Google Scholar 

  • Edwards SL, Wall BP, Morrison-Sheltar A, Sligh S, Weakley JC, Claiborne JB (2005) The effect of environmental hypercapnia and salinity on the expression of NHE-like isoforms in the gills of a euryhaline fish (Fundulus heteroclitus). J Exp Zool 303A:464–475

    Article  CAS  Google Scholar 

  • Georgalis T, Perry SF, Gilmour KM (2006) The role of branchial carbonic anhydrase in acid–base regulation in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209:518–530

    Article  PubMed  CAS  Google Scholar 

  • Gerloff T, Geier A, Stieger B, Hagenbuch B, Meier PJ, Matern S, Gartung C (1999) Differential expression of basolateral and canalicular organic anion transporters during regeneration of rat liver. Gastroenterology 117:1408–1415

    Article  PubMed  CAS  Google Scholar 

  • Goss GG, Wood CM (1990) Na+ and Cl uptake kinetics, diffusive effluxes and acidic equivalent fluxes across the gills of rainbow trout II. Responses to bicarbonate infusion. J Exp Biol 152:549–571

    CAS  Google Scholar 

  • Hopkins TE, Wood CM, Walsh PJ (1995) Interactions of cortisol and nitrogen metabolism in the ureogenic gulf toadfish Opsanus beta. J Exp Biol 198:2229–2235

    PubMed  CAS  Google Scholar 

  • Houston AH (1990) Blood and circulation. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, Bethesda, pp 273–334

    Google Scholar 

  • Huang C-H, Liu PZ (2001) New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 27:90–101

    Article  PubMed  CAS  Google Scholar 

  • Huang C-H, Peng J (2005) Evolutionary conservation and diversification of Rh family genes and proteins. Sci Proc Natl Acad USA 102:15512–15517

    Google Scholar 

  • Hung CYC, Tsui KNT, Wilson JM, Nawata CM, Wood CM, Wright PA (2007) Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210:2419–2429

    Article  PubMed  CAS  Google Scholar 

  • Hung CC, Nawata CM, Wood CM, Wright PA (2008) Rhesus glycoprotein and urea transporter genes are expressed in early stages of development of rainbow trout (Oncorhynchus mykiss). J Exp Zool 309A:262–268

    Article  CAS  Google Scholar 

  • Ivanis G, Esbaugh AJ, Perry SF (2008) Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid–base in freshwater rainbow trout (Oncorhynchus mykiss) 211:2467–2477

    Google Scholar 

  • Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acid–base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool 67:2065–2073

    Article  CAS  Google Scholar 

  • Kiilerich P, Kristiansen K, Madsen SS (2007) Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. J Endocrinol 194:417–427

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Baylis C, Verlander JW, Han KH, Reungjui S, Handlogten ME, Weiner ID (2007) Effect of reduced renal mass on renal ammonia transporter family RhC glycoprotein and Rh B glycoprotein, expression. Am J Physiol 293:F1238–F1247

    Article  CAS  Google Scholar 

  • Kong H, Kahatapitiya N, Kingsley K, Salo WL, Anderson PM, Wang YS, Walsh PJ (2000) Induction of carbamoyl phosphate synthetase III and glutamine synthetase mRNA during confinement stress in gulf toadfish (Opsanus beta). J Exp Biol 203:311–320

    PubMed  CAS  Google Scholar 

  • Lin DW, Coleman IM, Hawley S, Huang CY, Dumpit R, Gifford D, Kezele P, Hung H, Knudsen BS, Kristal AR, Nelson PS (2006) Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment and disease prognosis. J Clin Oncol 24:3763–3770

    Article  PubMed  CAS  Google Scholar 

  • McCormick SD, Regish A, O’Dea MF, Shrimpton JM (2008) Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+, K+-ATPase activity and isoform mRNA levels in Atlantic salmon. Gen Comp Endocrinol 157:35–40

    Article  PubMed  CAS  Google Scholar 

  • McDonald DG, Prior ET (1988) Branchial mechanisms of ion and acid–base regulation in the freshwater rainbow trout, Salmo gairdneri. Can J Zool 66:2699–2708

    Article  CAS  Google Scholar 

  • McDonald MD, Wood CM (2004) The effect of chronic cortisol elevation on urea metabolism and excretion in the rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 174:71–81

    Article  PubMed  CAS  Google Scholar 

  • McGeer JC, Eddy FB (1998) Ionic regulation and nitrogenous excretion in rainbow trout exposed to buffered and unbuffered freshwater of pH 10.5. Physiol Zool 71:179–190

    PubMed  CAS  Google Scholar 

  • Milligan L (1996) Metabolic recovery from exhaustive exercise in rainbow trout. Comp Biochem Physiol 113A:51–60

    Article  CAS  Google Scholar 

  • Mommsen TP, Hochachka PW (1988) The purine nucleotide cycle as two temporally separated metabolic units. Metabolism 37:552–556

    Article  PubMed  CAS  Google Scholar 

  • Mommsen TP, Walsh PJ (1992) Biochemical and environmental perspectives nitrogen metabolism in fishes. Experientia 48:583–593

    Article  CAS  Google Scholar 

  • Nakada T, Hoshijima K, Esaki M, Nagayoshi S, Kawakami K, Hirose S (2007a) Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol 293:R1743–R1753

    CAS  Google Scholar 

  • Nakada T, Westhoff CM, Kato A, Hirose S (2007b) Ammonia secretion from fish gill depends on a set of Rh proteins. FASEB J 21:1067–1074

    Article  PubMed  CAS  Google Scholar 

  • Nawata CM, Wood CM (2008) The effects of CO2 and external buffering on ammonia excretion and Rhesus glycoprotein mRNA expression in rainbow trout. J Exp Biol 211:3226–3236

    Article  PubMed  CAS  Google Scholar 

  • Nawata CM, Hung CCY, Tsui TKN, Wilson JM, Wright PA, Wood CM (2007) Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31:463–474

    Article  PubMed  CAS  Google Scholar 

  • Ortega VA, Renner KJ, Bernier NJ (2005) Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. J Exp Biol 208:1855–1866

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Beyers ML, Johnson DA (2000) Cloning and molecular characterization of the trout (Oncorhynchus mykiss) vacuolar H+-ATPase B subunit. J Exp Biol 203:459–470

    PubMed  CAS  Google Scholar 

  • Perry SF, Rivero-Lopez L, McNeill B, Wilson J (2006) Fooling a freshwater fish: how dietary salt transforms the rainbow trout gill into a seawater gill phenotype. J Exp Biol 209:4591–4596

    Article  PubMed  CAS  Google Scholar 

  • Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Poll Bull 45:17–23

    Article  CAS  Google Scholar 

  • Salama A, Morgan IJ, Wood CM (1999) The linkage between sodium uptake and ammonia excretion in rainbow trout - kinetic analysis, the effects of (NH4)2 SO4 and NH4 HCO3 infusion, and the influence of gill boundary layer pH. J Exp Biol 202:697–709

    PubMed  CAS  Google Scholar 

  • Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270

    Article  PubMed  CAS  Google Scholar 

  • Seshadri RM, Klein JD, Kozlowski S, Sands JM, Kim YH, Handlogten ME, Verlander JW, Weiner ID (2006) Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol 290:F397–F408

    Article  CAS  Google Scholar 

  • Shih T-H, Horng J-L, Hwang P-P, Lin L-Y (2008) Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol 295:C1625–C1632

    Article  CAS  Google Scholar 

  • Shrimpton JM, Randall DJ (1994) Downregulation of corticosteroid receptors in gills of coho salmon due to stress and cortisol treatment. Am J Physiol 267:R432–R438

    PubMed  CAS  Google Scholar 

  • Soivio A, Nynolm K (1975) A technique for repeated sampling of the blood of individual resting fish. J Exp Biol 62:207–217

    Google Scholar 

  • Tashjian D, Hung SSO (2005) Noninvasive surgery techniques in fish research: a review on esophageal intubation, dorsal aorta cannulation, and urinary catheterization in sturgeon. In: Sakai Y, McVey JP, Jang D, McVey E, Caesar M (eds) Aquaculture and pathobiology of Crustacean and other species. Proceedings, 32nd US–Japan meeting on aquaculture, Davis, CA, USA, 17–18 November 2003. UJNR Technical Report 32. National Oceanic and Atmospheric Administration Research, Silver Spring, MD, USA, pp 131–142. http://www.lib.noaa.gov/japan/aquaculture/proceedings/report32/hung_corrected.pdf

  • Tsui TKN, Hung CYC, Nawata CM, Wilson JM, Wright PA, Wood CM (2009) Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/NH4 + exchange complex. J Exp Biol 212:878–892

    Article  PubMed  CAS  Google Scholar 

  • Verdouw H, van Echteld CJA, Dekkers EMJ (1978) Ammonia determinations based on indophenol formation with sodium salicylate. Water Res 12:399–402

    Article  CAS  Google Scholar 

  • Vermette MG, Perry SF (1987a) The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri I. Blood respiratory, acid–base and ionic states. J Exp Biol 125:235–253

    Google Scholar 

  • Vermette MG, Perry SF (1987b) The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri. II. Branchial solute fluxes. J Exp Biol 128:255–267

    PubMed  CAS  Google Scholar 

  • Vermette MG, Perry SF (1987c) The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri. III. Renal ionic fluxes. J Exp Biol 128:269–285

    PubMed  CAS  Google Scholar 

  • Wicks BJ, Randall DJ (2002a) The effect of feeding and fasting on ammonia toxicity in juvenile rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 59:71–82

    Article  PubMed  CAS  Google Scholar 

  • Wicks BJ, Randall DJ (2002b) The effect of sub-lethal ammonia exposure on fed and unfed rainbow trout: the role of glutamine in regulation of ammonia. Comp Biochem Physiol A 132:275–285

    CAS  Google Scholar 

  • Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293:284–301

    Article  PubMed  CAS  Google Scholar 

  • Wilson RW, Wright PM, Munger S, Wood CM (1994) Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4 + exchange. J Exp Biol 191:37–58

    PubMed  CAS  Google Scholar 

  • Wolf K (1963) Physiological salines for freshwater teleosts. Prog Fish Cult 25:135–140

    Article  CAS  Google Scholar 

  • Wood CM (1988) Acid-base and ionic exchanges at gills and kidney after exhaustive exercise in the rainbow trout. J Exp Biol 136:461–481

    Google Scholar 

  • Wood CM (1993) Ammonia and urea metabolism and excretion. In: Evans DH (ed) The physiology of fishes. CRC Press, Boca Raton, pp 379–425

    Google Scholar 

  • Yesaki TY, Iwama GK (1992) Survival, acid-base regulation, ion regulation, and ammonia excretion in rainbow trout in highly alkaline hard water. Physiol Zool 65:763–787

    CAS  Google Scholar 

  • Zhao M, Chow A, Powers J, Fajardo G, Bernstein D (2004) Microarray analysis of gene expression after transverse aortic constriction in mice. Physiol Genomics 19:93–105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by an NSERC (Canada) Discovery grant and CFI (Canada) equipment awards to CMW. We thank Pat Wright and anonymous referees for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michele Nawata.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nawata, C.M., Wood, C.M. mRNA expression analysis of the physiological responses to ammonia infusion in rainbow trout. J Comp Physiol B 179, 799–810 (2009). https://doi.org/10.1007/s00360-009-0361-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-009-0361-5

Keywords

Navigation