Functional demands of dynamic biological adhesion: an integrative approach



Climbing organisms are constantly challenged to make their way rapidly and reliably across varied and often novel terrain. A diversity of morphologically and mechanically disparate attachment strategies have evolved across widely distributed phylogenetic groups to aid legged animals in scaling these surfaces, notable among them some very impressive adhesive pads. Despite the differences between, for example, the dry fibrillar pads of geckos and the smooth, secretion-aided pads of stick insects, I hypothesize that they face similar functional demands in their environment. I outline three broad criteria defining dynamic biological adhesion: reusability, reversibility, and substrate tolerance. Organismal adhesive pads must be able to attach repeatedly without significant decline in performance, detach easily at will, and adhere strongly to the broadest possible range of surfaces in their habitat. A survey of the literature suggests that evidence for these general principles can be found in existing research, but that many gaps remain to be filled. By taking a comparative, integrative approach to biological dynamic adhesion, rather than focusing on a few model organisms, investigators will continue to discover new and interesting attachment strategies in natural systems.


Adhesion Biomimetics Fibrillar adhesives Wet adhesives Locomotion 


  1. Aksak B, Murphy MP, Sitti M (2007) Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir 23:3322–3332. doi:10.1021/la062697t PubMedCrossRefGoogle Scholar
  2. Arnold JW (1974) Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera). Int J Insect Morphol Embryol 3:317–334. doi:10.1016/0020-7322(74)90026-9
  3. Asbeck AT, Kim S, Cutkosky MR, Provancher WR, Lanzetta M (2006) Scaling hard vertical surfaces with compliant microspine arrays. Int J Robot Res 25:1165–1179. doi:10.1177/0278364906072511 CrossRefGoogle Scholar
  4. Autumn K (2006) Properties, principles, and parameters of the gecko adhesive system. In: Smith A, Callow J (eds) Biological adhesives. Springer, Berlin, pp 225–255CrossRefGoogle Scholar
  5. Autumn K, Gravish N (2008) Gecko adhesion: evolutionary nanotechnology. Philos Trans R Soc Lond A 366:1575–1590. doi:10.1098/rsta.2007.2173 CrossRefGoogle Scholar
  6. Autumn K, Liang Y, Hsieh ST, Zesch W, Chan W-P, Kenny TW, Fearing RS, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685. doi:10.1038/35015073 PubMedCrossRefGoogle Scholar
  7. Autumn K, Ryan MJ, Wake DB (2002a) Integrating historical and mechanistic biology enhances the study of adaptation. Q Rev Biol 77:383–408. doi:10.1086/344413 PubMedCrossRefGoogle Scholar
  8. Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002b) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci USA 99:12252–12256. doi:10.1073/pnas.192252799 PubMedCrossRefGoogle Scholar
  9. Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006a) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209:3569–3579. doi:10.1242/jeb.02486 PubMedCrossRefGoogle Scholar
  10. Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006b) Dynamics of geckos running vertically. J Exp Biol 209:260–272. doi:10.1242/jeb.01980 PubMedCrossRefGoogle Scholar
  11. Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R (2006c) Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 209:3558–3568. doi:10.1242/jeb.02469 PubMedCrossRefGoogle Scholar
  12. Barnes WJP (2007) Functional morphology and design constraints of smooth adhesive pads. Mater Res Bull 32:479–485Google Scholar
  13. Barnes WJP, Oines C, Smith JM (2006) Whole animal measurements of shear and adhesive forces in adult tree frogs: insights into underlying mechanisms of adhesion obtained from studying the effects of size and scale. J Comp Physiol A 192:1179–1191. doi:10.1007/s00359-006-0146-1 CrossRefGoogle Scholar
  14. Barnes WJP, Pearman J, Platter J (2008) Application of peeling theory to tree frog adhesion, a biological system with biomimetic implications. Eur Acad Sci E Newsl Sci Technol 1:1–2Google Scholar
  15. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260Google Scholar
  16. Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113PubMedGoogle Scholar
  17. Betz O, Kolsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33:3. doi:10.1016/j.asd.2003.10.002 PubMedCrossRefGoogle Scholar
  18. Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207CrossRefGoogle Scholar
  19. Bhushan B (2007) Adhesion of multi-level hierarchical attachment systems in gecko feet. J Adhes Sci Technol 21:1213–1258. doi:10.1163/156856107782328353 CrossRefGoogle Scholar
  20. Bohn HF, Federle W (2004) Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101:14138–14143. doi:10.1073/pnas.0405885101 PubMedCrossRefGoogle Scholar
  21. Bonser RHC (2000) The Young’s modulus of ostrich claw keratin. J Mater Sci Lett 19:1039. doi:10.1023/A:1006786919376 CrossRefGoogle Scholar
  22. Cartmill M (1985) Climbing. In: Hildebrandt M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. The Belknap Press of Harvard University Press, Cambridge, pp 74–88Google Scholar
  23. Chen S, Gao H (2007) Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J Mech Phys Solids 55:1001. doi:10.1016/j.jmps.2006.10.008 CrossRefGoogle Scholar
  24. Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc Lond B Biol Sci. doi:10.1098/rspb.2007.1660
  25. Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592CrossRefGoogle Scholar
  26. Cushing PE, Brookhart JO, Kleebe H-J, Zito G, Payne P (2005) The suctorial organ of the Solifugae (Arachnida, Solifugae). Arthropod Struct Dev 34:397–406. doi:10.1016/j.asd.2005.02.002 CrossRefGoogle Scholar
  27. Dahlquist CA (1966) Tack. In: Eley DD (ed) Adhesion fundamentals and practice. McLaren and Sons Ltd, London, pp 143–151Google Scholar
  28. Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488PubMedGoogle Scholar
  29. de Crevoisier G, Fabre P, Corpart J-M, Leibler L (1999) Switchable tackiness and wettability of a liquid crystalline polymer. Science 285:1246–1249. doi:10.1126/science.285.5431.1246 PubMedCrossRefGoogle Scholar
  30. del Campo A, Arzt E (2007) Design parameters and current fabrication approaches for developing bioinspired dry adhesives. Macromol Biosci 7:118–127. doi:10.1002/mabi.200600214 PubMedCrossRefGoogle Scholar
  31. Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106PubMedCrossRefGoogle Scholar
  32. Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222. doi:10.1007/s00359-006-0150-5 CrossRefGoogle Scholar
  33. Emerson SB, Diehl D (1980) Toe pad morphology and mechanisms of sticking in frogs. Biol J Linn Soc 13:199–216. doi:10.1111/j.1095-8312.1980.tb00082.x CrossRefGoogle Scholar
  34. Endlein T, Federle W (2007) To stick and not getting stuck—detachment control in ants. Comp Biochem Physiol A 146:S121–S122. doi:10.1016/j.cbpa.2007.01.222 Google Scholar
  35. Ernst VV (1973) The digital pads of the tree frog, Hyla cinerea. I. The epidermis. Tissue Cell 5:83–96. doi:10.1016/S0040-8166(73)80007-2 PubMedCrossRefGoogle Scholar
  36. Federle W (2006) Why are so many adhesive pads hairy? J Exp Biol 209:2611–2621. doi:10.1242/jeb.02323 PubMedCrossRefGoogle Scholar
  37. Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct Dev 33:67–75. doi:10.1016/j.asd.2003.11.001 PubMedCrossRefGoogle Scholar
  38. Federle W, Rohrseitz K, Hölldobler B (2000) Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. J Exp Biol 203:505–512PubMedGoogle Scholar
  39. Federle W, Brainerd EL, McMahon TA, Holldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98:6215–6220. doi:10.1073/pnas.111139298 PubMedCrossRefGoogle Scholar
  40. Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106. doi:10.1093/icb/42.6.1100 CrossRefGoogle Scholar
  41. Federle W, Baumgartner W, Holldobler B (2004) Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J Exp Biol 207:67–74. doi:10.1242/jeb.00523 PubMedCrossRefGoogle Scholar
  42. Federle W, Barnes W, Baumgartner W, Drechsler P, Smith J (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697. doi:10.1098/rsif.2006.0135 PubMedCrossRefGoogle Scholar
  43. Foelix RF, Chu-Wang IW (1975) The structure of scopula hairs in spiders. In: Proceeding 6th international Arachnida congress. Nederlandse Entomologische Vereniging, Amsterdam, pp 156–157Google Scholar
  44. Fuller KNG, Tabor D (1975) The effect of surface roughness on the adhesion of elastic solids. Proc R Soc Lond A Math Phys Sci 345:327–342CrossRefGoogle Scholar
  45. Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci USA 101:7851–7856. doi:10.1073/pnas.0400757101 PubMedCrossRefGoogle Scholar
  46. Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285. doi:10.1016/j.mechmat.2004.03.008 CrossRefGoogle Scholar
  47. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463. doi:10.1038/nmat917 PubMedCrossRefGoogle Scholar
  48. Gillett JD, Wigglesworth VB (1932) The climbing organ of an insect, Rhodnius prolixus (Hemiptera, Reduviidae). Proc R Soc Lond B Biol Sci 111:364–376CrossRefGoogle Scholar
  49. Glassmaker NJ, Jagota A, Hui C-Y, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1:23–33. doi:10.1098/rsif.2004.0004 PubMedCrossRefGoogle Scholar
  50. Glassmaker NJ, Jagota A, Hui C-Y, Noderer WL, Chaudhury MK (2007) Biologically inspired crack trapping for enhanced adhesion. Proc Natl Acad Sci USA 104:10786–10791. doi:10.1073/pnas.0703762104 PubMedCrossRefGoogle Scholar
  51. Goldman DI, Chen TS, Dudek DM, Full RJ (2006) Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol 209:2990–3000. doi:10.1242/jeb.02322 PubMedCrossRefGoogle Scholar
  52. Goodwyn PP, Peressadko A, Schwarz H, Kastner V, Gorb S (2006) Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera). J Comp Physiol A 192:1233–1243. doi:10.1007/s00359-006-0156-z CrossRefGoogle Scholar
  53. Gorb S, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B Biol Sci 267:1239–1244CrossRefGoogle Scholar
  54. Gorb S, Jiao Y, Scherge M (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J Comp Physiol A 186:821–831. doi:10.1007/s003590000135 PubMedCrossRefGoogle Scholar
  55. Gorb S, Varenberg M, Peressadko A, Tuma J (2007) Biomimetic mushroom-shaped fibrillar adhesive microstructure. J R Soc Interface 4:271–275. doi:10.1098/rsif.2006.0164 PubMedCrossRefGoogle Scholar
  56. Gravish N, Wilkinson M, Autumn K (2008) Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface 5:339–348. doi:10.1098/rsif.2007.1077 PubMedCrossRefGoogle Scholar
  57. Green DM (1981) Adhesion and the toe-pads of treefrogs. Copeia 1981:790–796CrossRefGoogle Scholar
  58. Haas F, Gorb S (2004) Evolution of locomotory attachment pads in the Dermaptera (Insecta). Arthropod Struct Dev 33:45. doi:10.1016/j.asd.2003.11.003 PubMedCrossRefGoogle Scholar
  59. Hanna G, Barnes WJP (1991) Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155:103–125Google Scholar
  60. Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci USA 102:385–389. doi:10.1073/pnas.0408304102 PubMedCrossRefGoogle Scholar
  61. Hui C-Y, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1:35–48. doi:10.1098/rsif.2004.0005 PubMedCrossRefGoogle Scholar
  62. Hui CY, Glassmaker NJ, Jagota A (2005) How compliance compensates for surface roughness in fibrillar adhesion. J Adhes 81:699–721. doi:10.1080/00218460500187673 CrossRefGoogle Scholar
  63. Hui C-Y, Shen L, Jagota A, Autumn K (2006) Mechanics of anti-fouling or self-cleaning in gecko setae. In: 29th annual meeting of the Adhesion Society. Adhesion Society, Jacksonville, pp 29–31Google Scholar
  64. Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42:1140–1145. doi:10.1093/icb/42.6.1140 CrossRefGoogle Scholar
  65. Jusufi A, Goldman DI, Revzen S, Full RJ (2008) Active tails enhance arboreal acrobatics in geckos. Proc Natl Acad Sci USA 105:4215–4219. doi:10.1073/pnas.0711944105 PubMedCrossRefGoogle Scholar
  66. Kim TW, Bhushan B (2007) Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol 21:1–20CrossRefGoogle Scholar
  67. Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5:319–327. doi:10.1098/rsif.2007.1078 PubMedCrossRefGoogle Scholar
  68. Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24:1–10CrossRefGoogle Scholar
  69. Klann AE, Gromov AV, Cushing PE, Peretti AV, Alberti G (2008) The anatomy and ultrastructure of the suctorial organ of Solifugae (Arachnida). Arthropod Struct Dev 37:3–12. doi:10.1016/j.asd.2007.04.001 PubMedCrossRefGoogle Scholar
  70. Kustandi TS, Samper VD, Ng WS, Chong AS, Gao H (2007) Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J Micromech Microeng 17:N75–N81. doi:10.1088/0960-1317/17/10/N02 CrossRefGoogle Scholar
  71. Lamblet M, Verneuil E, Vilmin T, Buguin A, Silberzan P, Leger L (2007) Adhesion enhancement through micropatterning at polydimethylsiloxane–acrylic adhesive interfaces. Langmuir 23:6966–6974. doi:10.1021/la063104h PubMedCrossRefGoogle Scholar
  72. Lee J, Majidi C, Schubert B, Fearing RS (2008) Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour. J R Soc Interface 5:835–844. doi:10.1098/rsif.2007.1308 PubMedCrossRefGoogle Scholar
  73. Lees AD, Hardie J (1988) The organs of adhesion in the aphid Megoura viciae. J Exp Biol 136:209–228Google Scholar
  74. Majidi C, Groff RE, Maeno Y, Schubert B, Baek S, Bush B, Maboudian R, Gravish N, Wilkinson M, Autumn K, Fearing RS (2006) High friction from a stiff polymer using microfiber arrays. Phys Rev Lett 97:076103. doi:10.1103/PhysRevLett.97.076103 PubMedCrossRefGoogle Scholar
  75. Mizutani K, Egashira K, Toukai T, Ogushi J (2006) Adhesive force of a spider mite, Tetranychus urticae, to a flat smooth surface. JSME Int J Ser C 49:539–544. doi:10.1299/jsmec.49.539 CrossRefGoogle Scholar
  76. Nachtigall W (1974) Biological mechanisms of attachment. Springer, BerlinGoogle Scholar
  77. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677CrossRefGoogle Scholar
  78. Noderer WL, Shen L, Vajpayee S, Glassmaker NJ, Jagota A, Hui CY (2007) Enhanced adhesion and compliance of film-terminated fibrillar surfaces. Proc R Soc Lond A Math Phys Sci 463:2631–2654. doi:10.1098/rspa.2007.1891 CrossRefGoogle Scholar
  79. Northen MT, Turner KL (2006) Meso-scale adhesion testing of integrated micro- and nano-scale structures. Sensor Actuators A Phys 130/131:583–587. doi:10.1016/j.sna.2005.10.032 CrossRefGoogle Scholar
  80. Orso S, Wegst UGK, Eberl C, Arzt E (2006) Micrometer-scale tensile testing of biological attachment devices. Adv Mater 18:874–877. doi:10.1002/adma.200501807 CrossRefGoogle Scholar
  81. Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci USA 104:18595–18600. doi:10.1073/pnas.0707591104 PubMedCrossRefGoogle Scholar
  82. Peattie AM, Majidi C, Corder AB, Full RJ (2007) Ancestrally high elastic modulus of gecko setal β-keratin. J R Soc Interface 4:1071–1076. doi:10.1098/rsif.2007.0226 PubMedCrossRefGoogle Scholar
  83. Pesika NS, Tian Y, Zhao B, Rosenberg K, Zeng H, McGuiggan P, Autumn K, Israelachvili JN (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83:383–401. doi:10.1080/00218460701282539 CrossRefGoogle Scholar
  84. Platter J, Pearman J, Barnes J (2007) How do tree frogs adhere well to smooth surfaces and yet detach easily when necessary? Comp Biochem Physiol A 146:S123. doi:10.1016/j.cbpa.2007.01.227 Google Scholar
  85. Pohl H, Beutel RG (2004) Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Struct Dev 33:31–43. doi:10.1016/j.asd.2003.10.001 PubMedCrossRefGoogle Scholar
  86. Porwal PK, Hui CY (2008) Strength statistics of adhesive contact between a fibrillar structure and a rough substrate. J R Soc Interface 5:441–448. doi:10.1098/rsif.2007.1133 PubMedCrossRefGoogle Scholar
  87. Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117:271–294PubMedCrossRefGoogle Scholar
  88. Russell AP (1972) The foot of gekkonid lizards: a study in comparative and functional anatomy. PhD thesis, University of LondonGoogle Scholar
  89. Russell AP (1975) A contribution to the functional morphology of the foot of the tokay, Gekko gecko (Reptilia, Gekkonidae). J Zool (Lond) 176:437–476Google Scholar
  90. Russell AP (1979) Parallelism and integrated design in the foot structure of gekkonine and diplodactyline geckos. Copeia 1979:1–21CrossRefGoogle Scholar
  91. Russell AP, Johnson MK (2007) Real-world challenges to, and capabilities of, the gekkotan adhesive system: contrasting the rough and the smooth. Can J Zool 85:1228–1238. doi:10.1139/Z07-103 CrossRefGoogle Scholar
  92. Santos D, Sangbae K, Spenko M, Parness A, Cutkosky M (2007) Directional adhesive structures for controlled climbing on smooth vertical surfaces. In: 2007 IEEE international conference on robotics and automation, Roma, Italy, 10–14 April 2007, pp 1262–1267Google Scholar
  93. Scholz I, Baumgartner W, Federle W (2008) Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface. J Comp Physiol A. doi:10.1007/s00359-008-0314-6
  94. Sitti M, Fearing R (2002) Nanomolding based fabrication of synthetic gecko foot-hairs. In: 2nd IEEE conference on nanotechnology (IEEE-NANO 2002), Washington, DC, August 2002. IEEE Press, Piscataway, pp 137–140Google Scholar
  95. Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol 17:1055–1073. doi:10.1163/156856103322113788 CrossRefGoogle Scholar
  96. Spagna JC, Goldman DI, Lin PC, Koditschek DE, Full RJ (2007) Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain 2:9–18. doi:10.1088/1748-3182/2/1/002 Google Scholar
  97. Sponberg S, Full RJ (2008) Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain. J Exp Biol 211:433–446. doi:10.1242/jeb.012385 PubMedCrossRefGoogle Scholar
  98. Stork NE (1980) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linn Soc 68:173–306CrossRefGoogle Scholar
  99. Stork NE (1983) The adherence of beetle tarsal setae to glass. J Nat Hist 17:583–597CrossRefGoogle Scholar
  100. Tang T, Hui C, Glassmaker N (2005) Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface 2:505–516. doi:10.1098/rsif.2005.0070 PubMedCrossRefGoogle Scholar
  101. Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci USA 103(51):19320–19325. doi:10.1073/pnas.0608841103 PubMedCrossRefGoogle Scholar
  102. Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199. doi:10.1016/j.asd.2004.05.006 PubMedCrossRefGoogle Scholar
  103. Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol. doi:10.1016/j.jinsphys.2008.02.006
  104. Vötsch W, Nicholson G, Mueller R, Stierhof YD, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613. doi:10.1016/S0965-1748(02)00098-X PubMedCrossRefGoogle Scholar
  105. Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphoa vomitoria: a functional approach (Diptera: Calliphoridae). J Zool (Lond) 205:297–307Google Scholar
  106. Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511. doi:10.1126/science.215.4539.1509 PubMedCrossRefGoogle Scholar
  107. Wu CW, Kong XQ, Diane W (2007) Micronanostructures of the scales on a mosquito’s legs and their role in weight support. Phys Rev E 76:017301. doi:10.1103/PhysRevE.76.017301 CrossRefGoogle Scholar
  108. Xie T, Xiao X (2008) Self-peeling reversible dry adhesive system. Chem Mater 20:2866–2868. doi:10.1021/cm800173c CrossRefGoogle Scholar
  109. Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 2005:3799–3801. doi:10.1039/b506047h CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK

Personalised recommendations