Skip to main content

Advertisement

Log in

Cloning of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) from Caribbean spiny lobster Panulirus argus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

We have previously reported on calcium transport mechanisms in American lobster, Homarus americanus, using 45Ca2+ coupled with vesicle preparations of hepatopancreatic endoplasmic reticulum. The active transport of calcium across membranes bordering calcium-sequestering stores such as sarcoplasmic or endoplasmic reticulum is catalyzed by membrane-spanning proteins, the sarco-endoplasmic Ca2+-ATPases (SERCAs). In the study described here we used advanced bioinformatics and molecular techniques to clone SERCA from the economically important Caribbean spiny lobster, Panulirus argus. We report the complete cloning of a full-length SERCA from P. argus antenna cDNA (GenBank accession number AY702617). This cDNA has a 1020-amino acid residue open reading frame which is 90% identical to published sequences of other crustacean SERCA proteins. Our data support the hypothesis that one crustacean and three vertebrate genes controlling calcium transport were derived from a common ancestral gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahearn GA, Franco P (1993) Ca2+ transport pathways in brush-border membrane vesicles of crustacean antennal glands. Am J Physiol 264:R1206–R1213

    PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Brandl CJ, DeLeon S, Martin DR, MacLennan DH (1986) Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell 44:597–607

    Article  PubMed  CAS  Google Scholar 

  • Brandl CJ, DeLeon S, Martin DR, MacLennan DH (1987) Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum: expression in developing skeletal muscle. J Biol Chem 262:3768–3774

    PubMed  CAS  Google Scholar 

  • Chen D, Zhang Z, Wheatly MG, Gao Y (2002) Cloning and characterization of the heart muscle isoform of sarco/endoplasmic reticulum Ca2 + ATPase (SERCA) from crayfish. J Exp Biol 205:2677–2686

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Escalante R, Sastre L (1996) Tissue specific expression of two Artemia franciscana sarco/endoplasmic reticulum Ca-ATPase isoforms. J Histochem Cytochem 44:321–325

    PubMed  CAS  Google Scholar 

  • Fan W, Li C, Li S, Feng Q, Xie L, Zhang R (2007) Cloning, characterization, and expression patterns of three sarco/endoplasmic reticulum Ca2+-ATPase isoforms from pearl oyster (Pinctada fucata). Acta Biochim Biophys Sin (Shanghai) 39(9):722–730

    Article  CAS  Google Scholar 

  • Hagedorn M, Weihrauch D, Towle DW, Ziegler A (2003) Molecular characterization of the smooth endoplasmic reticulum Ca2+-ATPase of Porcellio scaber and its expression in sternal epithelia during the moult cycle. J Exp Biol 206:2167–2175

    Article  PubMed  CAS  Google Scholar 

  • Hecker KH, Roux KH (1996) High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR. Biotechniques 20(3):478–485

    PubMed  CAS  Google Scholar 

  • Karin NJ, Kaprielian Z, Fambrough DM (1989) Expression of avian Ca2+-ATPase in cultured mouse myogenic cells. Mol Cell Biol 9(5):1978–1986

    PubMed  CAS  Google Scholar 

  • Kretsinger RH (1976) Calcium-binding proteins. Ann Rev Biochem 45:239–266

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying hydrophobic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Lytton J, Zarain-Herzberg A, Periasamy M, MacLennan DH (1989) Molecular cloning of the mammalian smooth muscle sarco(endo)plasmic reticulum Ca2+-ATPase. J Biol Chem 264(12):7059–7065

    PubMed  CAS  Google Scholar 

  • MacLennan DH, Brandl CJ, Korczak B, Green NM (1985) Amino-acid sequence of a Ca2+ Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

    Article  PubMed  CAS  Google Scholar 

  • Magyar A, Varadi E (1990) Molecular cloning and chromosomal localization of a sarco/endoplasmic reticulum-type Ca2+-ATPase of Drosophila melanogaster. Biochem Biophys Res Comm 173:872–877

    Article  PubMed  CAS  Google Scholar 

  • Mandal PK, Mandal A, Ahearn GA (2005a) Physiological characterization of 45Ca2+ and 65Zn2+ transport by lobster hepatopancreatic endoplasmic reticulum. J Exp Zool A Comp Exp Biol 303(7):515–526

    Article  Google Scholar 

  • Mandal A, Meleshkevitch E, Mandal PK, Boudko D, Ahearn GA (2005b) Cloning of sarco-endoplasmic reticulum Ca2+ ATP-ase (SERCA) from caribbean Spiny lobster Panulirus argus. FASEB J 19(4):A215

    Google Scholar 

  • Maruyama K, Clarke DM, Fujii J, Loo TW, MacLennan DH (1989) Expresion of mutation of Ca2+ ATPase of the sarcoplasmic reticulum. Cell Motil Cytoskelet 14:26–34

    Article  CAS  Google Scholar 

  • Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD (2000) Calcium signaling in the RE: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23:222–229

    Article  PubMed  CAS  Google Scholar 

  • Matz MV (2002) Amplification of representative cDNA samples from microscopic amounts of invertebrate tissue to search for new genes. Methods Mol Biol 183:3–18

    PubMed  CAS  Google Scholar 

  • Matz MV (2003) Amplification of representative cDNA pools from microscopic amounts of animal tissue. Methods Mol Biol 221:103–116

    PubMed  CAS  Google Scholar 

  • Matz MV, Alieva NA, Chenichik A, Lukyanov SA (2003) Amplification of cDNA ends using PCR suppression effect and step-out PCR. Methods Mol Biol 221:41–49

    PubMed  CAS  Google Scholar 

  • Meleshkevitch EA, Assis-Nascimento P, Popova LB, Miller MM, Kohn AB, Phung EN, Mandal A, Harvey WR, Boudko DY (2006) Molecular characterization of the first aromatic nutrient transporter from the sodium neurotransporter symporter family. J Exp Biol 209:3183–3198

    Article  PubMed  CAS  Google Scholar 

  • Palmero I, Sastre L (1989) Complementary DNA cloning of a protein highly homologous to mammalian sarcoplasmic reticulum Ca2+-ATPase from the crustacean Artemia. Mol Biol 210:737–748

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sepùlveda MR, Hidalgo-Sànchez M, Mata AM (2004) Localization of endoplasmic reticulum and plasma membrane Ca2+-ATPases in subcellular fractions and sections of pig cerebellum. Eur J Neurosci 19:542–551

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wu KD, Lytton J (1993) Molecular cloning and quantification of sarcoplasmic reticulum Ca2+-ATPase isoforms in rat muscles. Am J Physiol 264:C333–C341

    PubMed  CAS  Google Scholar 

  • Zhang Z, Chen D, Wheatly MG (2000) Cloning and characterization of Sarco/Endoplasmic reticulum Ca2+ ATPase (SERCA) from crayfish axial muscle. J Exp Biol 203:3411–3423

    PubMed  CAS  Google Scholar 

  • Zhuang Z, Ahearn GA (1998) Energized Ca2+ transport by hepatopancreatic basolateral plasma membranes of Homarus americanus. J Exp Biol 201:211–220

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant IBN04-21986 and NIH grant 2RO1 A1030464-13A1. The first two authors made equal contributions to the laboratory experiments. We thank Dr. Melissa Miller of Whitney laboratory, UF for her help in doing RT-PCR; and Mr. David Wilson of CIRT, UNF for computer help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mandal.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, A., Arunachalam, S.C., Meleshkevitch, E.A. et al. Cloning of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) from Caribbean spiny lobster Panulirus argus . J Comp Physiol B 179, 205–214 (2009). https://doi.org/10.1007/s00360-008-0303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0303-7

Keywords

Navigation