Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society?

Abstract

Uric acid has historically been viewed as a purine metabolic waste product excreted by the kidney and gut that is relatively unimportant other than its penchant to crystallize in joints to cause the disease gout. In recent years, however, there has been the realization that uric acid is not biologically inert but may have a wide range of actions, including being both a pro- and anti-oxidant, a neurostimulant, and an inducer of inflammation and activator of the innate immune response. In this paper, we present the hypothesis that uric acid has a key role in the foraging response associated with starvation and fasting. We further suggest that there is a complex interplay between fructose, uric acid and vitamin C, with fructose and uric acid stimulating the foraging response and vitamin C countering this response. Finally, we suggest that the mutations in ascorbate synthesis and uricase that characterized early primate evolution were likely in response to the need to stimulate the foraging “survival” response and might have inadvertently had a role in accelerating the development of bipedal locomotion and intellectual development. Unfortunately, due to marked changes in the diet, resulting in dramatic increases in fructose- and purine-rich foods, these identical genotypic changes may be largely responsible for the epidemic of obesity, diabetes and cardiovascular disease in today’s society.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ackerman Z, Oron-Herman M, Grozovski M, Rosenthal T, Pappo O, Link G, Sela BA (2005) Fructose-induced fatty liver disease: hepatic effects of blood pressure and plasma triglyceride reduction. Hypertension 45:1012–1018

    PubMed  Article  CAS  Google Scholar 

  2. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78:6858–6862

    PubMed  Article  CAS  Google Scholar 

  3. Andrews P, Martin L (1991) Hominoid dietary evolution. Philos Trans R Soc Lond A 334:199–209 discussion 209

    CAS  Google Scholar 

  4. Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803

    PubMed  Article  CAS  Google Scholar 

  5. Barrera CM, Ruiz ZR, Dunlap WP (1988) Uric acid: a participating factor in the symptoms of hyperactivity. Biol Psychiatry 24:344–347

    PubMed  Article  CAS  Google Scholar 

  6. Barrera CM, Hunter RE, Dunlap WP (1989) Hyperuricemia and locomotor activity in developing rats. Pharmacol Biochem Behav 33:367–369

    PubMed  Article  CAS  Google Scholar 

  7. Begun DR (2003) Planet of the apes. Sci Am 289:74–83

    PubMed  Article  Google Scholar 

  8. Bloch S, Brackenridge CJ (1972) Psychological, performance and biochemical factors in medical students under examination stress. J Psychosom Res 16:25–33

    PubMed  Article  CAS  Google Scholar 

  9. Bohme M (2003) The Miocene climatic optimum:evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195:389–401

    Article  Google Scholar 

  10. Boyko EJ, de Courten M, Zimmet PZ, Chitson P, Tuomilehto J, Alberti KG (2000) Features of the metabolic syndrome predict higher risk of diabetes and impaired glucose tolerance: a prospective study in Mauritius. Diabetes care 23:1242–1248

    PubMed  Article  CAS  Google Scholar 

  11. Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79:537–543

    PubMed  CAS  Google Scholar 

  12. Brooks GW, Mueller E (1966) Serum urate concentrations among university professors: relation to drive, achievement, and leadership. JAMA 195:415–418

    PubMed  Article  CAS  Google Scholar 

  13. Brown CM, Dulloo AG, Yepuri G, Montani JP (2008) Fructose ingestion acutely elevates blood pressure in healthy young humans. Am J Physiol 294:R730–737

    CAS  Google Scholar 

  14. Cahill GF Jr (1970) Starvation in man. N Engl J Med 282:668–675

    PubMed  CAS  Google Scholar 

  15. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  16. Carnethon MR, Fortmann SP, Palaniappan L, Duncan BB, Schmidt MI, Chambless LE (2003) Risk factors for progression to incident hyperinsulinemia: the atherosclerosis risk in communities study, 1987–1998. Am J Epidemiol 158:1058–1067

    PubMed  Article  Google Scholar 

  17. Challet E, le Maho Y, Robin JP, Malan A, Cherel Y (1995) Involvement of corticosterone in the fasting-induced rise in protein utilization and locomotor activity. Pharmacol Biochem Behav 50:405–412

    PubMed  Article  CAS  Google Scholar 

  18. Cherel Y, Le Maho Y (1991) Refeeding after the late increase in nitrogen excretion during prolonged fasting in the rat. Physiol Behav 50:345–349

    PubMed  Article  CAS  Google Scholar 

  19. Cherel Y, Robin JP, Heitz A, Calgari C, Le Maho Y (1992) Relationships between lipid availability and protein utilization during prolonged fasting. J Comp Physiol 162:305–313

    CAS  Google Scholar 

  20. Cheung KJ, Tzameli I, Pissios P, Rovira I, Gavrilova O, Ohtsubo T, Chen Z, Finkel T, Flier JS, Friedman JM (2007) Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell metab 5:115–128

    PubMed  Article  CAS  Google Scholar 

  21. Church WH, Rappolt G (1999) Nigrostriatal catecholamine metabolism in guinea pigs is altered by purine enzyme inhibition. Exp Brain Res 127:147–150

    PubMed  Article  CAS  Google Scholar 

  22. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML (2008) Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 26:269–275

    PubMed  CAS  Google Scholar 

  23. Davids MR, Segal AS, Brunengraber H, Halperin ML (2004) An unusual cause for ketoacidosis. QJM 97:365–376

    PubMed  Article  CAS  Google Scholar 

  24. Davies KJ, Sevanian A, Muakkassah-Kelly SF, Hochstein P (1986) Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem J 235:747–754

    PubMed  CAS  Google Scholar 

  25. Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC (2007) High serum uric acid as a novel risk factor for type 2 diabetes mellitus. Diabetes care 31:361–362

    PubMed  Article  CAS  Google Scholar 

  26. Dehghan A, van Hoek M, Sijbrands EJ, Hofman A, Witteman JC (2008) High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes care 31:361–362

    PubMed  Article  CAS  Google Scholar 

  27. Duffy WB, Senekjian HO, Knight TF, Weinman EJ (1981) Management of asymptomatic hyperuricemia. JAMA 246:2215–2216

    PubMed  Article  CAS  Google Scholar 

  28. Dutton CJ, Taylor P (2003) A comparison between pre- and posthibernation morphometry, hematology, and blood chemistry in viperid snakes. J Zoo Wildl Med 34:53–58

    PubMed  Google Scholar 

  29. Eaton SB, Konner M (1985) Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 312:283–289

    PubMed  CAS  Google Scholar 

  30. Egan BM, Lackland DT (2000) Biochemical and metabolic effects of very-low-salt diets. Am J Med Sci 320:233–239

    PubMed  Article  CAS  Google Scholar 

  31. Facchini F, Chen YD, Hollenbeck CB, Reaven GM (1991) Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 266:3008–3011

    PubMed  Article  CAS  Google Scholar 

  32. Faires JS, McCarty DJ (1962) Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 280:682–685

    Article  Google Scholar 

  33. Feig DI, Johnson RJ (2003) Hyperuricemia in childhood primary hypertension. Hypertension 42:247–252

    PubMed  Article  CAS  Google Scholar 

  34. Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ, Kang DH, Finch J, Johnson RJ (2004) Hypothesis: uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int 66:281–287

    PubMed  Article  CAS  Google Scholar 

  35. Friedman TC, Mastorakos G, Newman TD, Mullen NM, Horton EG, Costello R, Papadopoulos NM, Chrousos GP (1996) Carbohydrate and lipid metabolism in endogenous hypercortisolism: shared features with metabolic syndrome X and NIDDM. Endocr J 43:645–655

    PubMed  Article  CAS  Google Scholar 

  36. Gersch C, Palii S, Angerhofer A, Imaram W, Johnson RJ, Henderson GN (2007) Uric acid’s reaction with Peroxynitrite: Formation of Reactive Intermediates, Alklyation Products, and Triuret. BBRC (in press)

  37. Gutman AB (1965) Significance of uric acid as a nitrogenous waste in vertebrate evolution. Arthritis Rheum 8:614–626

    PubMed  Article  CAS  Google Scholar 

  38. Hartung EF (1957) Symposium on gout: historical considerations. Metabolism 6:196–208

    PubMed  CAS  Google Scholar 

  39. Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157

    PubMed  Article  Google Scholar 

  40. Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    PubMed  Article  Google Scholar 

  41. Hink HU, Santanam N, Dikalov S, McCann L, Nguyen AD, Parthasarathy S, Harrison DG, Fukai T (2002) Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity. Arterioscler Thromb Vasc Biol 22:1402–1408

    PubMed  Article  CAS  Google Scholar 

  42. Hu DE, Moore AM, Thomsen LL, Brindle KM (2004) Uric acid promotes tumor immune rejection. Cancer Res 64:5059–5062

    PubMed  Article  CAS  Google Scholar 

  43. Hunter RE, Barrera CM, Dohanich GP, Dunlap WP (1990) Effects of uric acid and caffeine on A1 adenosine receptor binding in developing rat brain. Pharmacol Biochem Behav 35:791–795

    PubMed  Article  CAS  Google Scholar 

  44. Jenni L, Jenni-Eiermann S, Spina F, Schwabl H (2000) Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am J Physiol 278:R1182–1189

    CAS  Google Scholar 

  45. Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ (2005) Uric acid, evolution and primitive cultures. Semin Nephrol 25:3–8

    PubMed  Article  CAS  Google Scholar 

  46. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, Sanchez-Lozada LG (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899–906

    PubMed  CAS  Google Scholar 

  47. Johnson RJ, Gaucher EA, Sautin YY, Henderson GN, Angerhofer AJ, Benner SA (2008) The planetary biology of ascorbate and uric acid and their relationship with the epidemic of obesity and cardiovascular disease. Med Hypotheses 71:22–31

    PubMed  Article  CAS  Google Scholar 

  48. Kanbay M, Ozkara A, Selcoki Y, Isik B, Turgut F, Bavbek N, Uz E, Akcay A, Yigitoglu R, Covic A (2007) Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol 39:1227–1233

    PubMed  Article  CAS  Google Scholar 

  49. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L, Johnson RJ (2003) Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 41:1287–1293

    PubMed  Article  CAS  Google Scholar 

  50. Kang DH, Park SK, Lee IK, Johnson RJ (2005) Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol 16:3553–3562

    PubMed  Article  CAS  Google Scholar 

  51. Keilin J (1959) The biological significance of uric acid and guanine excretion. Biol Rev Cambridge Phil Soc 34:265–296

    CAS  Google Scholar 

  52. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S, Johnson RJ (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67:1739–1742

    PubMed  Article  Google Scholar 

  53. Kofidis T, Lebl DR, Swijnenburg RJ, Greeve JM, Klima U, Robbins RC (2006) Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur J Cardiothorac Surg 29:50–55

    PubMed  Article  Google Scholar 

  54. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2005) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. Biochem Pharmacol 70:343–354

    PubMed  Article  CAS  Google Scholar 

  55. Lennox WG (1924) Increase of uric acid in the blood during prolonged starvation. JAMA 82:602

    CAS  Google Scholar 

  56. Ma YL, Rice ME, Chao ML, Rivera PM, Zhao HW, Ross AP, Zhu X, Smith MA, Drew KL (2004) Ascorbate distribution during hibernation is independent of ascorbate redox state. Free Radic Biol Med 37:511–520

    PubMed  Article  CAS  Google Scholar 

  57. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML (2003) Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension 42:474–480

    PubMed  Article  CAS  Google Scholar 

  58. Mazzali M, Hughes J, Kim YG, Jefferson JA, Kang DH, Gordon KL, Lan HY, Kivlighn S, Johnson RJ (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38:1101–1106

    PubMed  Article  CAS  Google Scholar 

  59. Nagy S (1980) Vitamin C contents of citrus fruit and their products: a review. J Agric Food Chem 28:8–18

    PubMed  Article  CAS  Google Scholar 

  60. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006a) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol 290:F625–631

    CAS  Google Scholar 

  61. Nakagawa T, Tuttle KR, Short RA, Johnson RJ (2006b) Fructose-induced hyperuricemia as a casual mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 1:80–86

    Article  CAS  Google Scholar 

  62. Nakanishi N, Okamoto M, Yoshida H, Matsuo Y, Suzuki K, Tatara K (2003) Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur J Epidemiol 18:523–530

    PubMed  Article  CAS  Google Scholar 

  63. Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG (2000) Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis 148:131–139

    PubMed  Article  CAS  Google Scholar 

  64. Oda M, Satta Y, Takenaka O, Takahata N (2002) Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol 19:640–653

    PubMed  CAS  Google Scholar 

  65. Ogryzlo MA (1965) Hyperuricemia induced by high fat diets and starvation. Arthritis Rheum 8:799–822

    PubMed  Article  CAS  Google Scholar 

  66. Okamoto I, Kayano T, Hanaya T, Arai S, Ikeda M, Kurimoto M (2006) Up-regulation of an extracellular superoxide dismutase-like activity in hibernating hamsters subjected to oxidative stress in mid- to late arousal from torpor. Comp Biochem Physiol C Toxicol Pharmacol 144:47–56

    PubMed  Article  CAS  Google Scholar 

  67. Oliver WJ, Cohen EL, Neel JV (1975) Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a “no-salt” culture. Circulation 52:146–151

    PubMed  CAS  Google Scholar 

  68. Orowan E (1955) The origin of man. Nature 175:683–684

    PubMed  Article  CAS  Google Scholar 

  69. Osborne PG, Hashimoto M (2007) Brain ECF antioxidant interactions in hamsters during arousal from hibernation. Behav Brain Res 178:115–122

    PubMed  Article  CAS  Google Scholar 

  70. Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, Johnson RJ, Abdelmalek MF (2008) Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 48:993–999

    PubMed  Article  CAS  Google Scholar 

  71. Perheentupa J, Raivio K (1967) Fructose-induced hyperuricaemia. Lancet 2:528–531

    PubMed  Article  CAS  Google Scholar 

  72. Pickford M (2002) Palaeoenvironments and hominoid evolution. Z Morphol Anthropol 83:337–348

    PubMed  Google Scholar 

  73. Pilbeam D (1996) Genetic and morphological records of the Hominoidea and hominid origins: a synthesis. Mol Phylogen Evol 5:155–168

    Article  CAS  Google Scholar 

  74. Proctor P (1970) Similar functions of uric acid and ascorbate in man? Nature 228:868

    PubMed  Article  CAS  Google Scholar 

  75. Rahe RH, Rubin RT, Arthur RJ (1974) The three investigators study. Serum uric acid, cholesterol, and cortisol variability during stresses of everyday life. Psychosom Med 36:258–268

    PubMed  CAS  Google Scholar 

  76. Reaven GM (1999) Insulin resistance, the key to survival: a rose by any other name. Diabetologia 42:384–385

    PubMed  Article  CAS  Google Scholar 

  77. Robin JP, Boucontet L, Chillet P, Groscolas R (1998) Behavioral changes in fasting emperor penguins: evidence for a “refeeding signal” linked to a metabolic shift. Am J Physiol 274:R746–753

    PubMed  CAS  Google Scholar 

  78. Rockall AG, Sohaib SA, Evans D, Kaltsas G, Isidori AM, Monson JP, Besser GM, Grossman AB, Reznek RH (2003) Hepatic steatosis in Cushing’s syndrome: a radiological assessment using computed tomography. Eur J Endocrinol 149:543–548

    PubMed  Article  CAS  Google Scholar 

  79. Sanchez-Lozada LG, Tapia E, Bautista-Garcia P, Soto V, Avila-Casado C, Vega-Campos IP, Nakagawa T, Zhao L, Franco M, Johnson RJ (2008) Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol 294:F710–718

    CAS  Article  Google Scholar 

  80. Santos CX, Anjos EI, Augusto O (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 372:285–294

    PubMed  Article  CAS  Google Scholar 

  81. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ (2007) Adverse effects of the classical antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 293:C584–596

    PubMed  Article  CAS  Google Scholar 

  82. Segal MS, Gollub E, Johnson RJ (2007) Is the fructose index more relevant with regards to cardiovascular disease than the glycemic index? Eur J Nutr 46:406–417

    PubMed  Article  CAS  Google Scholar 

  83. Sevanian A, Davies KJ, Hochstein P (1985) Conservation of vitamin C by uric acid in blood. J Free Radic Biol Med 1:117–124

    PubMed  Article  CAS  Google Scholar 

  84. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    PubMed  Article  CAS  Google Scholar 

  85. Shi Y, Galusha SA, Rock KL (2006) Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 176:3905–3908

    PubMed  CAS  Google Scholar 

  86. Stetten D Jr, Hearon JZ (1959) Intellectual level measured by army classification battery and serum uric acid concentration. Science 129:1737

    PubMed  Article  Google Scholar 

  87. Sundstrom J, Sullivan L, D’Agostino RB, Levy D, Kannel WB, Vasan RS (2005) Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension 45:28–33

    PubMed  Google Scholar 

  88. Talaat KM, El-Sheikh AR (2007) The effect of mild hyperuricemia on urinary transforming growth factor beta and the progression of chronic kidney disease. Am J Nephrol 27:435–440

    PubMed  Article  CAS  Google Scholar 

  89. Tan S, Radi R, Gaudier F, Evans RA, Rivera A, Kirk KA, Parks DA (1993) Physiologic levels of uric acid inhibit xanthine oxidase in human plasma. Pediatr Res 34:303–307

    PubMed  CAS  Google Scholar 

  90. Toien O, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol 281:R572–583

    CAS  Google Scholar 

  91. Toma I, Kang JJ, Meer EJ, Peti-Peterdi J (2007) Uric acid triggers renin release via a macula densa-dependent pathway. J Am Soc Nephrol 18:156A

    Google Scholar 

  92. Vasdev S, Gill V, Parai S, Longerich L, Gadag V (2002) Dietary vitamin E and C supplementation prevents fructose induced hypertension in rats. Mol Cell Biochem 241:107–114

    PubMed  Article  CAS  Google Scholar 

  93. Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M, Johnson RJ (2002) Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 40:355–360

    PubMed  Article  CAS  Google Scholar 

  94. Wayner DD, Burton GW, Ingold KU, Barclay LR, Locke SJ (1987) The relative contributions of vitamin E, urate, ascorbate and proteins to the total peroxyl radical-trapping antioxidant activity of human blood plasma. Biochim Biophys Acta 924:408–419

    PubMed  CAS  Google Scholar 

  95. Wexler BC (1982) Allantoxanamide-induced myocardial necrosis in Sprague-Dawley vs spontaneously hypertensive rats. Proc Soc Exp Biol Med 170:476–485

    PubMed  CAS  Google Scholar 

  96. Wexler BC, Greenberg BP (1977) Effect of increased serum urate levels on virgin rats with no arteriosclerosis versus breeder rats with preexistent arteriosclerosis. Metabolism 26:1309–1320

    PubMed  Article  CAS  Google Scholar 

  97. Whiteman M, Halliwell B (1996) Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by ascorbic acid. A comparison with other biological antioxidants. Free Radic Res 25:275–283

    PubMed  Article  CAS  Google Scholar 

  98. Wu XW, Muzny DM, Lee CC, Caskey CT (1992) Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol 34:78–84

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by US Public Health Service grants HL-68607 (RJ), DK-52121 (RJ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard J. Johnson.

Additional information

Disclaimers

Dr Johnson is listed as an inventor on several patent applications related to the role of uric acid in hypertension and metabolic syndrome; Dr Johnson is also an author for a book on fructose and uric acid (The Sugar Fix) that was published by Rodale in 2008.

Communicated by G. Heldmaier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, R.J., Sautin, Y.Y., Oliver, W.J. et al. Lessons from comparative physiology: could uric acid represent a physiologic alarm signal gone awry in western society?. J Comp Physiol B 179, 67–76 (2009). https://doi.org/10.1007/s00360-008-0291-7

Download citation

Keywords

  • Uric acid
  • Fructose
  • Foraging
  • Metabolic syndrome
  • Obesity
  • Fasting
  • Hibernation