Skip to main content
Log in

Changes in plasma catecholamine concentration during salinity manipulation and anaesthesia in the hagfish Eptatretus cirrhatus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Plasma catecholamines were measured following surgery under anaesthesia and after exposing hagfish to 90 and 110% sea water (SW). Plasma noradrenaline (NA) concentration increased from a resting value of 7 to 818 nM l−1 on anaesthesia. Plasma adrenaline (AD) did not change. NA concentrations also increased during volume depletion (110% SW), but to much lower values (26 nM l−1 at 100 min). AD concentrations were increased at 20 min, then fell. During volume loading (90% SW) NA fell, and AD increased to a maximum concentration of 511 nM l−1 at 40 min (resting concentration 24 nM l−1). The data are consistent with a vasoconstrictory role for NA on central veins when venous pressures fall and a vasodilatory role for AD on volume expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2
Fig. 3

Similar content being viewed by others

Abbreviations

DA:

Dorsal aorta

HR:

Heart rate

PCV:

Posterior cardinal vein

References

  • Augustinsson KB, Fange R, Johnels A, Ostlund E (1956) Histological, physiology and biochemical studies on the heart of two cyclostomes, hagfish (Myxine) and lamprey (Lampetra). Am Fish Soc Symp 131:257–276

    CAS  Google Scholar 

  • Axelsson M, Farrell AP, Nilsson S (1990) Effect of hypoxia and drugs on the cardiovascular dynamics of the Atlantic hagfish, Myxine glutinosa. J Exp Biol 151:297–316

    CAS  Google Scholar 

  • Bernier NJ, Fuentes X, Randall DJ (1996) Adenosine receptor blockade and hypoxia tolerance in rainbow trout and Pacific hagfish II. Effects on plasma catecholamines and erythrocytes. J Exp Biol 199:497–507

    PubMed  CAS  Google Scholar 

  • Bernier NJ, Perry SF (1998) Control of catecholamine secretion in hagfishes. In: Jørgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman and Hall, London pp 413–427

    Google Scholar 

  • Boutilier RG, Iwama GK, Randall DJ (1986) The promotion of catecholamine release in rainbow trout, (Salmo gairdneri), by acute acidosis: interactions between red cell pH and haemoglobin oxygen-carrying capacity. J Exp Biol 123:145–157

    PubMed  CAS  Google Scholar 

  • Butler PJ, Taylor EW, Capra MF, Davison W (1978) The effects of hypoxia on the levels of circulating catecholamines in the dogfish Scyliorhinus canicula. J Comp Physiol 127:325–330

    CAS  Google Scholar 

  • Butler PJ, Taylor EW, Davison W (1979) The effects of long term, moderate hypoxia on acid–base balance, plasma catecholamines and possible anaerobic end products in the unrestrained dogfish Scyliorhinus canicula. J Comp Physiol 132:297–303

    CAS  Google Scholar 

  • Dashow L, Epple A (1985) Plasma catecholamines in the lamprey: intrinsic cardiovascular messengers? Comp Biochem Physiol 82C:119–122

    CAS  Google Scholar 

  • Euler USv, Fänge R (1961) Catecholamines in nerves and organs of Myxine glutinosa, Squalus acanthias, and Gadus callarias. Gen Comp Endocrinol 1:191–194

    Article  Google Scholar 

  • Foster JM, Forster ME (2006) Effects of salinity manipulations on blood pressures in an osmoconforming chordate, the hagfish, Eptatretus cirrhatus. J Comp Physiol B (in press)

  • Forster ME (1990) Confirmation of the low metabolic rate of hagfish. Comp Biochem Physiol 96A:113–116

    Article  Google Scholar 

  • Forster ME (1998) Cardiovascular function in hagfishes. In: Jorgensen JM, Lomholt JP, Weber RE, Malte H (eds) The biology of hagfishes. Chapman and Hall, London pp 237–258

    Google Scholar 

  • Forster ME, Davison W, Axelsson M, Farrell AP (1992) Cardiovascular responses to hypoxia in the hagfish, Eptatretus cirrhatus. Respir Physiol 88:373–386

    Article  PubMed  CAS  Google Scholar 

  • Forster ME, Davison W, Axelsson M, Sundin L, Franklin CE, Gieseg S (1998) Catecholamine release in heat-stressed Antarctic fish causes proton extrusion by the red cells. J Comp Physiol B 168:345–352

    Article  CAS  Google Scholar 

  • Gingerich WH, Drottar KR (1989) Plasma catecholamine concentrations in rainbow trout (Salmo gairdneri) at rest and after anesthesia and surgery. Gen Comp Endocrinol 73:390–397

    Article  PubMed  CAS  Google Scholar 

  • Hill JV, Forster ME (2004) Cardiovascular responses of Chinook salmon (Oncorhynchus tshawytscha) during rapid anaesthetic induction and recovery. Comp Biochem Physiol 137C:167–177

    CAS  Google Scholar 

  • Holmgren S, Nilsson S (1975) Effects of some adrenergic and cholinergic drugs on isolated spleen strips from the cod, (Gadus morhua). Eur J Pharmacol 32:163–169

    Article  PubMed  CAS  Google Scholar 

  • Julio AE, Monpetit CJ, Perry SF (1998) Does blood acid-base status modulate catecholamine secretion in the rainbow trout (Oncorhynchus mykiss)? J Exp Biol 201:3085–3095

    PubMed  CAS  Google Scholar 

  • Le Bras YM (1982) Effects of anaesthesia and surgery on levels of adrenaline and noradrenaline in the blood plasma of the eel (Anguilla anguilla L.). Comp Biochem Physiol 72C:141–144

    CAS  Google Scholar 

  • Mellander S, Johansson B (1968) Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev 20:117–196

    PubMed  CAS  Google Scholar 

  • Nilsson S, Holmgren S (1998) The autonomic nervous system and chromaffin tissue in hagfishes. In: Jorgensen J, Lomholt JP, Weber R, Malte H (eds) The biology of hagfishes. Chapman and Hall, London pp 480–495

    Google Scholar 

  • Olson KR, Conklin DJ, Conlon JM, Kellogg M, Smith MP, Weaver L, Bushnell PG, Duff DW (1997) Physiological inactivation of vasoactive hormones in rainbow trout. J Exp Zool 279:254–264

    Article  CAS  Google Scholar 

  • Östlund E, Bloom G, Adams-Ray J, Ritzen M, Siegman M, Nordenstam H, Lishajko F, vonEuler US (1960) Storage and release of catecholamines and the occurrence of a specific submicroscopic granulation in hearts of cyclostomes. Nature, London 188:324–325

    Google Scholar 

  • Nilsson S, Axelsson M (1987) Cardiovascular control systems in fish. In: Taylor EW (eds) Neurobiology of the cardiorespiratory system. Manchester University Press, Manchester pp 115–133

    Google Scholar 

  • Pettersson K, Nilsson S (1979) Catecholamine stores in the holocephalan fish Chimaera monstrosa. Marine Biol Lett 1:41–4

    CAS  Google Scholar 

  • Perry SF, Bernier NJ (1999) The acute humoral adrenergic stress response in fish: facts and fiction. Aquaculture 177:285–295

    Article  CAS  Google Scholar 

  • Perry SF, Fritsche R, Thomas S (1993) Storage and release of catecholamines from the chromaffin tissue of the Atlantic hagfish Myxine glutinosa. J Exp Biol 183:165–184

    CAS  Google Scholar 

  • Perry SF, Kinkead R (1989) The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri). Respir Physiol 77:365–378

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Reid SG, Gilmour KM, Boijink CL, Lopes JM, Milsom WK, Rantin FT (2004) A comparison of adrenergic stress responses in three tropical teleosts exposed to acute hypoxia. Am J Physiol 287:R188–R197

    Article  CAS  Google Scholar 

  • Randall DJ, Perry SF (1992) Catecholamines. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology. Academic, San Diego pp 255–300

    Google Scholar 

  • Reid SG, Bernier N, Perry SF (1998) The adrenergic stress response in fish: control of catecholamine storage and release. Comp Biochem Physiol 120C:1–27

    CAS  Google Scholar 

  • Rothwell SE, Black SE, Jerrett AR, Forster ME (2005) Cardiovascular changes and catecholamine release following anaesthesia in Chinook salmon (Oncorhynchus tshawytscha) and snapper (Pagrus auratus). Comp Biochem Physiol 140A:289–298

    CAS  Google Scholar 

  • Sandblom E, Axelsson M (2005) Baroreflex mediated control of heart rate and vascular capacitance of trout. J Exp Biol 298:821–829

    Article  Google Scholar 

  • Satchell GH (1991) Physiology and form of fish circulation. Cambridge University Press, Cambridge

    Google Scholar 

  • Sundin L, Axelsson M, Nilsson S, Davison W, Forster ME (1994) Evidence of regulatory mechanisms for the distribution of blood between the arterial and the venous compartments in the hagfish gill pouch. J Exp Biol 190:281–286

    PubMed  Google Scholar 

  • Tang Y, Boutilier RG (1988) Correlation between catecholamine release and degree of acidotic stress in trout. Am J Physiol 255:R395–R399

    PubMed  CAS  Google Scholar 

  • Urban BW, Bleckwenn M (2002) Concepts and correlations relevant to general anaesthesia. Br J Anaesth 89:3–16

    Article  PubMed  CAS  Google Scholar 

  • Wendelaar Bonga S (1997) The stress response in fish. Physiol Rev 77:591–625

    PubMed  CAS  Google Scholar 

  • Woodward JJ (1982) Plasma catecholamines in resting rainbow trout, Salmo gairdneri Richardson, by high pressure liquid chromatography. J Fish Biol 21:429–432

    Article  CAS  Google Scholar 

  • Yamamoto K-I, Itazawa Y (1989) Erythrocyte supply from the spleen of exercised carp. Comp Biochem Physiol 92A:139–144

    Google Scholar 

  • Zhang YT, Weaver L, Ibeawuchi A, Olson KR (1998) Catecholaminergic regulation of venous function in the rainbow trout. Am J Physiol 272:R1195–R1202

    Google Scholar 

Download references

Acknowledgments

Experiments were approved by the University of Canterbury’s Animal Ethics Committee and comply with the laws of New Zealand. We thank two anonymous reviewers for their assistance in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Forster.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, J.M., Forster, M.E. Changes in plasma catecholamine concentration during salinity manipulation and anaesthesia in the hagfish Eptatretus cirrhatus . J Comp Physiol B 177, 41–47 (2007). https://doi.org/10.1007/s00360-006-0107-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0107-6

Keywords

Navigation