Skip to main content

Advertisement

Log in

Xylose utilization and short-chain fatty acid production by selected components of the intestinal microflora of a rodent pollinator (Aethomys namaquensis)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Namaqua rock mice (Aethomys namaquensis) consume nectar xylose when visiting Protea flowers. Whole-animal metabolism studies suggest that the gastrointestinal microflora plays an important role in xylose metabolism in A. namaquensis. We collected caecal contents under anaerobic conditions, cultured caecal microflora both aerobically and anaerobically, and assessed caecal microbial xylose utilization using a 14C-xylose incubation assay. All four mice sampled hosted culturable caecal micro-organisms that tested positive for xylose utilization. These were classified by 16S rRNA based taxonomy as: Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, Shigella boydii, Arthrobacter sp. and members of the fungal genera Aspergillus and Penicillium. Cultures of these isolates were then analyzed by gas chromatography to determine the types and quantities of short-chain fatty acids produced by xylose fermentation. These results are discussed in the context of other studies of gut microflora in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFU:

Colony forming units

SCFA:

Short-chain fatty acids

References

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilisation. Curr Opin Biotechnol 11:187–198

    Article  PubMed  CAS  Google Scholar 

  • Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71:968–978

    Article  PubMed  CAS  Google Scholar 

  • Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    PubMed  CAS  Google Scholar 

  • Bowden BN (1970) The sugars in the extrafloral nectar of Adropogan gayanus var. bisquamulatus. Phytochemistry 9:2315–2318

    Article  CAS  Google Scholar 

  • Buffenstein R, Yahav S (1991) The effect of diet on microfaunal population and function in the caecum of a subterranean naked mole-rat, Heterocephalus glaber. Br J Nutr 65:249–258

    Article  PubMed  CAS  Google Scholar 

  • Campbell JM, Fahey GC Jr, Wolf BW (1997) Selected indigestible oligosaccharides affect large bowel mass, caecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127:130–136

    PubMed  CAS  Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotech 18:295–331

    Article  CAS  Google Scholar 

  • Clench MH, Mathias JR (1995) The avian caecum: a review. Wilson Bull 107:93–121

    Google Scholar 

  • Collins MD, Hoyles L, Foster G, Falsen E, Weiss N (2002) Arthrobacter nasiphocae sp. nov., from the common seal (Phoca vitulina). Int J Syst Evol Microbiol 52:569–571

    PubMed  Google Scholar 

  • Demetrakopolous GE, Amos H (1978) Xylose and xylitol: metabolism, physiology and nutritional value. World Rev Nutr Diet 32:96–122

    Google Scholar 

  • Domsch KH, Gams W, Anderson T-H (1980) Compendium of soil fungi, vol 1. Academic, London

  • Eschbach M, Mobitz H, Rompf A, Jahn D (2003) Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett 223:227–230

    Article  PubMed  CAS  Google Scholar 

  • Fantry L (2001) Gastrointestinal infections in the immunocompromised host. Curr Opin Gastroenterol 17:40–45

    Article  PubMed  CAS  Google Scholar 

  • Filho EX, Tuohy MG, Puls J, Coughlan MP (1991) The xylan-degrading enzyme systems of Penicillim capsulatum and Talaromyces emersonii. Biochem Soc Trans 19:25S

    PubMed  CAS  Google Scholar 

  • Fleming PA, Nicolson SW (2002) How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators? Oecologia 132:361–368

    Article  Google Scholar 

  • Funke G, Hutson RA, Bernard KA, Pfyffer GE, Wauters G, Collins MD (1996) Isolation of Arthrobacter spp. from clinical specimens and decription of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J Clin Microbiol 34:2356–2363

    PubMed  CAS  Google Scholar 

  • Hespell RB, Wolf R, Bothast RJ (1987) Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria. Appl Environ Microbiol 53:2849–2853

    PubMed  CAS  Google Scholar 

  • Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    PubMed  CAS  Google Scholar 

  • Holdeman V, Cato EP, Moore WEC (1977) Anaerobe Laboratory Manual, 4th edn. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

  • Jackson S, Nicolson SW (2002) Xylose as a nectar sugar: from biochemistry to ecology. Comp Biochem Physiol B 131:613–620

    Article  PubMed  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

    PubMed  CAS  Google Scholar 

  • Jensen H, Shoenheyder H (1989) Immunofluorescence staining of hyphae in the histopathological diagnosis of mycoses in cattle. J Med Vet Mycol 27:33–44

    Article  PubMed  CAS  Google Scholar 

  • Jensen H, Basse A, Aalbaek B (1989) Mycosis in the stomach compartments of cattle. Acta Vet Scand 30:409–423

    PubMed  CAS  Google Scholar 

  • Jensen H, Shoenheyder H, Basse A (1991) Acute disseminated aspergillosis in a cow with special reference to penetration and spread. J Comp Pathol 104:411–417

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, Nicolson SW (2001) Pollen digestion in flower-feeding Scarabaeidae: protea beetles (Cetoniini) and monkey beetles (Hopliini). J Insect Physiol 47:725–733

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, van Tets IG, Nicolson SW (1999) Sugar preferences and xylose metabolism of a mammal pollinator, the Namaqua rock mouse (Aethomys namaquensis). Physiol Biochem Zool 72:438–444

    Article  PubMed  CAS  Google Scholar 

  • Johnson SA, Nicolson SW, Jackson S (2004) The effect of different oral antibiotics on the gastrointestinal microflora of a wild rodent (Aethomys namaquensis). Comp Biochem Physiol A 138:475–483

    Article  CAS  Google Scholar 

  • Johnson SA, Nicolson SW, Jackson S (2006) Nectar xylose metabolism in a rodent pollinator (Aethomys namaquensis): defining the role of gastrointestinal microflora using 14C-labelled xylose. Physiol Biochem Zool 79:159–168

    Article  PubMed  CAS  Google Scholar 

  • Kiriyama H, Hariu Y, Sakata T (1992) Comparison of in vitro productivities of short-chain fatty acids and gases from aldoses and the corresponding alcohols by pig caecal bacteria. J Nutr Biochem 3:447–451

    Article  CAS  Google Scholar 

  • Kormelink FJ, Gruppen H, Vietor RJ, Voragen AG (1993) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249:355–367

    Article  PubMed  CAS  Google Scholar 

  • Krishnan R, James HM, Bais R, Rofe AM, Edwards JB, Conyers RAJ (1980) Some biochemical studies on the adaptation associated with xylitol ingestion in rats. Aust J Exp Bio Med Sci 58:627–638

    Article  CAS  Google Scholar 

  • Lan Y, Verstegen MWA, Tamminga S, Williams BA (2005) The role of commensal gut microbial community in broiler chickens. World Poult Sci J 61:95–104

    Article  Google Scholar 

  • Mackie RI, Rycyk M, Ruemmler RL, Aminov RI, Wikelski M (2004) Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galápagos Archipelago. Physiol Biochem Zool 77:127–138

    Article  PubMed  Google Scholar 

  • Marounek M, Kopečný J (1994) Utilisation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens. Appl Environ Microbiol 60:738–739

    PubMed  CAS  Google Scholar 

  • Matte A, Forsberg CW, Gibbons AN (1992) Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D and Fibrobacter succinogenes S85. Can J Microbiol 38:370–376

    Article  PubMed  CAS  Google Scholar 

  • McCrae SI, Leith KM, Gordon AH, Wood TM (1994) Xylan-degrading enzyme system produced by the fungus Aspergillus awamori. Enzyme Microbial Technol 16:826–834

    Article  CAS  Google Scholar 

  • Mead GC (1989) Microbes of the avian caecum: types present and substrates utilised. J Exp Zool 3 Suppl:48–54

    Article  Google Scholar 

  • Nardon P, Grenier AM (1989) Endosymbiosis in Coleoptera: biological, biochemical, and genetic aspects. In: Schwemmler W, Gassner G (eds) Insect endocytobiosis: morphology, physiology, genetics and evolution. CRC Press, Boca Raton, pp 175–216

    Google Scholar 

  • Nicolson SW, van Wyk B-E (1998) Nectar sugars in Proteaceae: patterns and processes. Aust J Bot 46:489–504

    Article  Google Scholar 

  • Osorio CR, Barja JL, Hutson RA, Collins MD (1999) Arthrobacter rhombi sp. nov., isolated from Greenland halibut (Reinhardtius hippoglossoides). Int J Syst Bacteriol 49:1217–1220

    Article  PubMed  CAS  Google Scholar 

  • Prathumpai W, Gabelgaard JB, Wanchanthuek P, van de Vondervoort PJI, de Groot MJL, McIntyre M, Nielsen J (2003) Metabolic control analysis of xylose catabolism in Aspergillus. Biotechnol Prog 19:1136–1141

    Article  PubMed  CAS  Google Scholar 

  • Preest MR, Folk DG, Beuchat CA (2003) Decomposition of nitrogenous compounds by intestinal bacteria in hummingbirds. Auk 120:1091–1101

    Article  Google Scholar 

  • Raper KB, Fennel DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore

    Google Scholar 

  • Rübsamen K, Hume ID, Engelhardt W (1982) Physiology of the rock hyrax. Comp Biochem Physiol A 72:271–277

    Article  PubMed  Google Scholar 

  • Shelley C (1999) Preadaptation and the explanation of human evolution. Biol Philos 14:65–82

    Article  Google Scholar 

  • Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s Manual of Systematic Bacteriology, vol 2. Williams and Wilkins, Baltimore

  • Stevens CE, Hume ID (1995) Microbial fermentation and synthesis of nutrients and the absorption of end products. In: Comparative physiology of the vertebrate digestive system. Press Syndicate, New York, pp 188–228

    Google Scholar 

  • Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol Rev 78:393–427

    PubMed  CAS  Google Scholar 

  • Storms V, Devriese LA, Coopman R, Schumann P, Vyncke F, Gillis M (2003) Arthrobacter gandavensis sp. nov., for strains of veterinary origin. Int J Syst Evol Microbiol 53:1881–1884

    Article  PubMed  CAS  Google Scholar 

  • Suh S, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145

    Article  PubMed  Google Scholar 

  • Turner KW, Roberton AM (1979) Xylose, arabinose and rhamnose fermentation by Bacteroides ruminicola. Appl Environ Microbiol 38:7–12

    PubMed  CAS  Google Scholar 

  • Van Wyk B-E, Nicolson SW (1995) Xylose as a major sugar in Protea and Faurea. S Afr J Sci 91:151–153

    Google Scholar 

  • Vogt JA, Pencharz PB, Wolever TMS (2004) l-Rhamnose increases serum propionate in humans. Am J Clin Nutr 80:89–94

    PubMed  CAS  Google Scholar 

  • Wauters G, Charlier J, Janssens M, Delmée M (2000) Identification of Arthrobacter oxydans, Arthrobacter, luteolus sp. nov., and Arthrbacter albus sp. nov., isolated from human clinical specimens. J Clin Microbiol 38:2412–2415

    PubMed  CAS  Google Scholar 

  • Wiens D, Rourke JP, Casper BB, Rickart EA, LaPine TR, Peterson CJ, Channing A (1983) Nonflying mammal pollination of southern African Proteas: a non-coevolved system. Ann Mo Bot Gard 70:1–31

    Article  Google Scholar 

  • Yiannikouris A, Jouany J (2002) Mycotoxins in feeds and their fate in animals: a review. Anim Res 51:81–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Elanna Bester and Jeanette Cilliers (Microbiology Department), Bettine Jansen van Vuuren (Molecular Genomics Laboratory, Botany and Zoology Department), Ulrike Damm (Plant Pathology Department), Candice Ockert (Institute for Wine Biotechnology) and Gunnar Sigge and Armelle Ntsame-Affane (Food Science Department), all at the University of Stellenbosch, helped generously with laboratory work. HPLC analyses for the faecal microflora study were carried out at the Institute for Plant Biotechnology, University of Stellenbosch. This work was supported by NRF Grant GUN 2053621 to S.W. Nicolson, NRF GUN 2039528 to S. Jackson and by a grant from SubCommittee B of the Research Committee of the University of Stellenbosch to S. Jackson. The experiments described herein comply with the current laws of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jackson.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, S.A., Jackson, S., Abratt, V.R. et al. Xylose utilization and short-chain fatty acid production by selected components of the intestinal microflora of a rodent pollinator (Aethomys namaquensis). J Comp Physiol B 176, 631–641 (2006). https://doi.org/10.1007/s00360-006-0086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0086-7

Keywords

Navigation