Skip to main content
Log in

Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The filtration coefficient (Kfc) is a sensitive measure of microvascular hydraulic conductivity and has been reported for the alveolar lungs of many mammalian species, but not for the parabronchial avian lung. This study reports the Kfc in the isolated lungs of normal chickens and in the lungs of chickens given the edemogenic agents oleic acid (OA) or dimethyl amiloride (DMA). The control Kfc =0.04±0.01 ml min−1 kPa−1 g−1. This parameter increased significantly following the administration of both OA (0.12±0.02 ml min−1 kPa−1 g−1) and DMA (0.07±0.01 ml min kPa−1 g−1). As endothelial cadherins are thought to play a role in the dynamic response to acute lung injury, we utilized Western blot analysis to assess lung cadherin content and Northern blot analysis to assess pulmonary vascular endothelial (VE) cadherin expression following drug administration. Lung cadherin content decreases markedly following DMA, but not OA administration. VE cadherin expression increases as a result of DMA treatment, but is unchanged following OA. Our results suggest that the permeability characteristics of the avian lung are more closely consistent with those of the mammalian rather than the reptilian lung, and, that cadherins may play a significant role in the response to acute increases in avian pulmonary microvascular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AJ:

Adherens junction

CAD 5:

Cadherin five

DMA:

Dimethyl amiloride

Jv:

Rate of microvascular filtration

Kfc:

Filtration coefficient

NIFP:

Net intravascular filtration pressure

Pc:

Pulmonary capillary blood pressure

πc:

Perfusate colloid osmotic pressure

OA:

Oleic acid

σ:

Osmotic reflection coefficient

VE:

Vascular endothelial

References

  • Bachofen H, Bachofen M, Weibel ER (1988) Ultrastructural aspects of pulmonary edema. J Thorac Imaging 3:1–7

    Article  PubMed  CAS  Google Scholar 

  • Bernhard W, Gebert A, Vieten G, Rau GA, Hohfeld JM, Postle AD, Freihorst J (2001) Pulmonary surfactant in birds: coping with surface tension in a tubular lung. Am J Physiol Regul Integr Comp Physiol 281:R327–R337

    PubMed  CAS  Google Scholar 

  • Burger RE, Estavillo JA (1977) Pulmonary circulation–vertebral venous interconnections in the chicken. Anat Rec 188:39–44

    Article  PubMed  CAS  Google Scholar 

  • Burggren WW (1982) Pulmonary blood plasma filtration in reptiles: a wet vertebrate lung. Science 215:77–78

    Article  PubMed  Google Scholar 

  • Dejana E, Corada M, Lampugnani MG (1995) Endothelial cell-to-cell junctions. FASEB J 9:910–918

    PubMed  CAS  Google Scholar 

  • Delpiano MA (1996) Metabolic inhibitors affect the conductance of low voltage-activated calcium channels in brain capillary endothelial cells. Adv Exp Med Biol 410:109–113

    PubMed  CAS  Google Scholar 

  • Furlow JD, Berry DL, Wang Z, Brown DD (1997) A set of novel tadpole specific genes expressed only in the epidermis are down-regulated by thyroid hormone during Xenopus laevis metamorphosis. Dev Biol 182:284–298

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Kouklis P, Ning X, Minshall RD, Sandoval R, Vogel SM, Malik AB (2000) Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. Am J Physiol Lung Cell Mol Physiol 279:L1218–L1225

    PubMed  CAS  Google Scholar 

  • Geiger B, Volberg T, Ginsberg D, Bitzur S, Sabanay I, Hynes R (1990) Broad spectrum pan-cadherin antibodies reactive with the C-terminal 24 amino acid residues of N-cadherin. J Cell Sci 97:607–614

    PubMed  CAS  Google Scholar 

  • Halushka PV, Wise WC (1987) Oleic acid induces pulmonary injury independent of eicosanoids in isolated, perfused rabbit lung. Circ Shock 22:221–230

    PubMed  Google Scholar 

  • Hu Q, Xia Y, Corda S, Zweier JL, Ziegelstein RC (1998) Hydrogen peroxide decreases pHi in human aortic endothelial cells by inhibiting Na+/H+ exchange. Circ Res 83:644–651

    PubMed  CAS  Google Scholar 

  • Jones TA, Townsley MI, Weidner WJ (1982) Effects of intracranial and left atrial hypertension on lung fluid balance in sheep. J Appl Physiol 52:1324–1329

    PubMed  CAS  Google Scholar 

  • Khimenko PL, Barnard JW, Moore TM, Wilson OS, Ballard ST, AE Taylor (1994) Vascular permeability and epithelial transport effects on lung edema formation in ischemia and reperfusion. J Appl Physiol 77:1116–1121

    PubMed  CAS  Google Scholar 

  • King AS (1984) Birds—their structure and function. Bailliere Tindall, New York

    Google Scholar 

  • Kobayashi T, Kubo K, Newman JH (1991) Oxidant lung injury. In: Said SI (ed) The pulmonary circulation and acute lung injury. Futura, Mt. Kisco, pp 521–542

    Google Scholar 

  • Levin DL (1988) Studies on the movement of fluid and protein across the pulmonary microvascular endothelium in a freshwater turtle. PhD Thesis, University of California

  • Lum H, Malik AB (1996) Mechanisms of increased endothelial permeability. Can J Physiol Pharmacol 74:787–800

    Article  PubMed  CAS  Google Scholar 

  • Maarek JMI, Grimbert F (1994) Segmental pulmonary vascular resistances during oleic acid injury in rabbits. Respir Physiol 89:179–191

    Article  Google Scholar 

  • Maina JN, King AS, Settle G (1989) An allometric study of pulmonary morphometric parameters in birds with mammalian comparisons. Philos Trans R Soc Lond B 326:1–57

    Article  CAS  Google Scholar 

  • Orgeig S, Smits AW, Daniels CB, Herman JK (1997) Surfactant regulates pulmonary fluid balance in reptiles. Am J Physiol Regul Integr Comp Physiol 273:R2013–2021

    CAS  Google Scholar 

  • Parker JC, Gillespie MN, Taylor AE, Martin SL (1999) Capillary filtration coefficient, vascular resistance and compliance in isolated mouse lungs. J Appl Physiol 87:1421–1427

    PubMed  CAS  Google Scholar 

  • Powell FL, Hastings RH, Mazzone RW (1985) Pulmonary vascular resistance during unilateral pulmonary arterial occlusion in ducks. Am J Physiol 249:R39–43

    PubMed  CAS  Google Scholar 

  • Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E (1996) Thrombin induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 16:488–496

    PubMed  CAS  Google Scholar 

  • Safdar Z, Wang P, Ichimura H, Issekutz AC, Quadri S, Bhattacharya J (2003) Hyperosmolarity enhances the lung capillary barrier. J Clin Invest 112:1541–1549

    PubMed  CAS  Google Scholar 

  • Sartori C, Matthay MA, Scherrer U (2001) Transepithelial sodium and water transport in the lung. Major player and novel therapeutic target in pulmonary edema. Adv Exp Med Biol 502:315–338

    PubMed  CAS  Google Scholar 

  • Smits AW (1989) Fluid balance in vertebrate lungs. In: Wood SC (ed) Comparative pulmonary physiology. Dekker, New York, pp 503–537

    Google Scholar 

  • Smits AW (1998) Fluid balance in vertebrate lungs: are all lungs dry? In: Weir EK, Reeves JT (eds) Pulmonary edema. Futura, Armonk, pp 3–16

    Google Scholar 

  • Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811

    Article  PubMed  CAS  Google Scholar 

  • Staub NC (1981) Pulmonary edema due to increased microvascular permeability. Ann Rev Med 32:291–312

    Article  PubMed  CAS  Google Scholar 

  • Staub NC (1988) New concepts about the pathophysiology of pulmonary edema. J Thorac Imaging 3:8–14

    Article  PubMed  CAS  Google Scholar 

  • Taylor AE, Bernard JW, Barman SA, Adkins WK (1991) Fluid balance. In: Crystal RG, West JB (eds) The lung: scientific foundations. Raven, New York, pp 1147–1161

    Google Scholar 

  • Townsley MI, McClure DE, Weidner WJ (1984) Assessment of pulmonary microvascular permeability in acutely prepared sheep. J Appl Physiol 56:857–861

    PubMed  CAS  Google Scholar 

  • Townsley MI, Taylor GE, Korthius RJ, Taylor AE (1985) Promethazine or DPPD pretreatment attenuates oleic acid-induced injury in isolated canine lungs. J Appl Physiol 59:39–46

    PubMed  CAS  Google Scholar 

  • Townsley MI, Korthius RJ, Rippe B, Parker JC, Taylor AE (1986) Validation of the double vascular occlusion method for Pc,i in lung and skeletal muscle. J Appl Physiol 67:127–132

    Google Scholar 

  • Weidner WJ (1978) Extravascular lung water content in the domestic fowl (Gallus domesticus). Physiol Zool 51:267–271

    Google Scholar 

  • Weidner WJ, Kinnison JR (2002a) Effect of extracellular fluid volume expansion on the interparabronchial septum of the avian lung. J Comp Pathol 127: 219–222

    Article  CAS  Google Scholar 

  • Weidner WJ, Kinnison JR (2002b). Effect of hydrostatic pulmonary edema on the interparabronchial septum of the chicken lung. Poult Sci 81:1563–1566

    CAS  Google Scholar 

  • Weidner WJ, Lancaster CT (1999) Effects of monastral blue on pulmonary arterial blood pressure and lung and liver particle retention in chickens. Poult Sci 81:878–882

    Google Scholar 

  • Weidner WJ, Hoffman LF, DeFouw DO (1981) Effect of sustained +Gz acceleration on lung fluid balance: an ultrastructural study. Physiologist 24:S85–S86

    Google Scholar 

  • Weidner WJ, Selna LA, McClure DE, DeFouw DO (1993) Effect of extracellular fluid volume expansion on avian lung fluid balance. Respir Physiol 91:125–136

    Article  PubMed  CAS  Google Scholar 

  • Weidner WJ, Lau SR, Wallace S (2003) Measurement of the capillary filtration coefficient in the isolated, perfused avian lung. [Online] http://www.faseb.org/meetings/eb

  • West JB (1995) Respiratory physiology—the essentials. Williams and Wilkins, Baltimore

    Google Scholar 

Download references

Acknowledgements

The authors thank E. Neff, H. Yang, S. Lau, S. Wallace, M. Egan, C. Bradbury, S. Le, and J.S Hamilton for their invaluable help with surgical preparation of experimental animals, data collection, and tissue preparation for immunoblot studies. This study supported in part by NIH Grant DK55511 to JD Furlow. DS Waddell is the recipient of NRSA 1 F32 AR052611-01. This study was conducted under an approved protocol of the University of California, Davis (Protocol for Animal Use and Care No. 10329).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Jeffrey Weidner.

Additional information

Communicated by H.V. Carey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidner, W.J., Waddell, D.S. & Furlow, J.D. Measurement of the filtration coefficient (Kfc) in the lung of Gallus domesticus and the effects of increased microvascular permeability. J Comp Physiol B 176, 567–574 (2006). https://doi.org/10.1007/s00360-006-0079-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0079-6

Keywords

Navigation