Skip to main content
Log in

Physiological and hormonal control of thermal depression in the tiger snake, Notechis scutatus

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Plasma sodium concentrations in field-caught Western tiger snakes, Notechis scutatus, from semi-arid Carnac Island (CI) varied seasonally, with snakes exhibiting significant hypernatraemia during summer and normal concentrations following autumn rain. In contrast, field-caught tiger snakes from a perennial fresh-water swamp (Herdsman Lake, HL) exhibited no significant increase in plasma sodium concentrations during summer. Laboratory-induced hypernatraemia caused thermal depression in both populations; there was a weak negative relationship between plasma sodium concentration and temperature selection that was significant for CI snakes. Hypernatraemia significantly elevated circulating concentrations of the neuropeptide arginine vasotocin (AVT) in both CI and HL snakes. CI snakes injected with a physiological dosage of AVT also evidenced thermal depression. Despite the positive correlation between AVT and both plasma sodium concentration and osmolality for laboratory snakes, field samples from CI snakes indicate that circulating levels of AVT may be influenced more by plasma osmolality than sodium levels. The data suggest that, in CI snakes, chronic dehydration in the field leads to hypernatraemia which may lead to elevated levels of AVT if plasma osmolality also increases. This will in turn invoke a depression in thermal behaviour that may improve the water economy and survival of snakes on semi-arid CI. Although HL snakes do not experience seasonal dehydration, physiological changes away from the stable homeostatic state appear to prompt the same behavioural shifts, illustrating the intrinsic nature of the thermal behaviour in different populations of the same species of snake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2
Fig 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig 8

Similar content being viewed by others

Abbreviations

AVT:

Arginine vasotocin

CI:

Carnac Island

HLH:

Herdsman Lake

[Na+]:

Plasma sodium concentration

BM:

Body mass

SVL:

Snout-vent length

BCI:

Body condition index

SL:

Salt loading régime

WL:

Water loading régime

PBT:

Preferred body temperature

AMT:

Average maximum temperature

MTS:

Median temperature selected

AVP:

Arginine vasopressin

References

  • Atchley WR, Gaskins CT, Anderson D (1976) Statistical properties of ratios I. Empirical results. Syst Zool 25:137–148

    Article  Google Scholar 

  • Baverstock PR, Bradshaw SD (1975) Variation in rate of growth and adrenal corticosteroidogenesis in field and laboratory populations of the lizard Amphibolurus ornatus. Comp Biochem Physiol 52A:557–566

    Article  Google Scholar 

  • Bentley PJ (1976) Osmoregulation. In: Gans C, Dawson WR (eds) Biology of the Reptilia. Academic, New York, pp 365–412

    Google Scholar 

  • Beuchat CA (1986) Reproductive influences on the thermoregulatory behavior of a live-bearing lizard. Copeia 1986:971–979

    Article  Google Scholar 

  • Bonnet X, Pearson D, Ladyman MT, Lourdais O, Bradshaw SD (2002) ‘Heaven” for serpents? A mark-recapture study of tiger snakes (Notechis scutatus) on Carnac Island, Western Australia. Aust Ecol 27:442–450

    Article  Google Scholar 

  • Bradshaw SD, Bradshaw FJ (2002) Arginine vasotocin: site and mode of action in the reptilian kidney. Gen Comp Endocrinol 126:7–13

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw SD, Rice GE (1981) The effects of pituitary and adrenal hormones on renal and post-renal reabsorption of water and electrolytes in the lizard Varanus gouldii (Gray). Gen Comp Endocrinol 44:82–93

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw SD (1970) Seasonal changes in the water and electrolyte metabolism of Amphibolurus lizards in the field. Comp Biochem Physiol 36:689–718

    Article  CAS  Google Scholar 

  • Bradshaw SD (1986) Ecophysiology of desert reptiles. Academic, Sydney, pp 323

    Google Scholar 

  • Bradshaw SD (1997) Homeostasis in desert reptiles. Springer, Berlin Heidelberg New York, pp 213

    Google Scholar 

  • Bradshaw SD, Shoemaker VH (1967) Aspects of water and electrolyte changes in a field population of Amphibolurus lizards. Comp Biochem Physiol 20:855–865

    Article  CAS  Google Scholar 

  • Charland MB, Gregory PT (1990) The influence of female reproductive status on thermoregulation in a viviparous snake, Crotalus virdis. Copeia 4:1089–1098

    Article  Google Scholar 

  • Crowley SR (1987) The effect of desiccation on the preferred body temperature and activity level of the lizard Sceloporus undulates. Copeia 1:25–32

    Article  Google Scholar 

  • Dantzler WH (1989) Comparative physiology of the vertebrate kidney. Springer, Berlin Heidelberg New York

    Google Scholar 

  • De Witt CB, Friedman RM (1979) Significance of skewness in ectotherm regulation. Am Zool 19:195–209

    Google Scholar 

  • Dessauer HC (1970) Blood chemistry of reptiles: physiological and evolutionary aspects. In: Gans C, Parsons TS (eds) Biology of the Reptilia. Academic, New York, pp 1–72

    Google Scholar 

  • Dme’il R, Zilber B (1971) Water balance in a desert snake. Copeia 1971:754–755

    Article  Google Scholar 

  • Dupré RK, Crawford EC Jr (1985) Behavioral thermoregulation during dehydration and osmotic loading of the desert iguana. Physiol Zool 58:357–363

    Google Scholar 

  • Dupré RK, Crawford EC (1986) Elevation of the panting threshold of the desert iguana, Dipsosaurus dorsalis, during dehydration: potential roles of changes in osmolality and body fluid volume. J Comp Physiol 156B:377–381

    Google Scholar 

  • Fergusson B, Bradshaw SD (1990) Plasma arginine vasotocin, progesterone and luteal development during pregnancy in the viviparous lizard, Tiliqua rugosa. Gen Comp Endocrinol 82:140–151

    Article  Google Scholar 

  • Figler RA, MacKenzie DS, Owens DW, Licht P, Amoss MS (1989) Increased levels of arginine vasotocin and neurophysin during nesting in sea turtles. Gen Comp Endocrinol 73:223–232

    Article  PubMed  CAS  Google Scholar 

  • Garrick LD (1974) Reproductive influences on behavioral thermoregulation in the lizard Sceloporus cyanogenys. Physiol Behav 12:85–91

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DL, Braun EJ (1988) Contributions of the kidneys and intestines to water conservation and plasma levels of antidiuretic hormone during dehydration in the house sparrows Passer domesticus. J Comp Physiol B 158:353–362

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DL (2002) Water and salt balance in seabirds. In: Schreiber EA, Burgur J (eds) Biology of marine birds. CRC, Boca Raton, pp 467–480

    Google Scholar 

  • Greer AE (1990) The biology and evolution of Australian lizards. Surrey Beatty & Sons, Sydney

    Google Scholar 

  • Gregory PT, Crampton LH, Skebo KM (1999) Conflicts and interactions among reproduction, thermoregulation and feeding in viviparous reptiles: are gravid snakes anorexic? J Zool 248:231–241

    Article  Google Scholar 

  • Grenot C (1976) Ecophysiologie du lézard saharien Uromastix acanthinurus (Bell, 1825) (Agamidae, herbivore). Pub Lab Zool ENS Paris 7:1–323

    Google Scholar 

  • Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818

    Article  PubMed  CAS  Google Scholar 

  • Koike TI, Pryor LR, Neldon HL (1979) Effect of saline infusion on plasma immunoreactive vasotocin in conscious chickens (Gallus domesticus). Gen Comp Endocrinol 37:451–458

    Article  PubMed  CAS  Google Scholar 

  • La Rochelle FT, North WG, Stern P (1980) A new extraction of arginine vasopressin from blood: the use of octadecasilyl-silica. Pfluegers Arch 387:79–81

    Article  CAS  Google Scholar 

  • Ladyman MT, Bradshaw SD (2003) The influence of dehydration on the thermal preferences of the Western tiger snake, Notechis scutatus. J Comp Physiol B 173:239–246

    PubMed  CAS  Google Scholar 

  • Lecomte J, Clobert J, Massot M (1993) Shift in behaviour related to pregnancy in Lacerta vivipara. Revue d’Ecologie (Terre Vie) 48:99–107

    Google Scholar 

  • Lutterschmidt D, Hutchinson VH (2003) Influence of thyroid hormones on the thermal selection of African house snakes (Lamprophis fuliginosus). J Therm Biol 28:167–173

    Article  CAS  Google Scholar 

  • Madsen T, Shine R (2002) Short and chubby or long and slim? Food intake, growth and body condition in free-ranging pythons. Aust Ecol 27:672–680

    Article  Google Scholar 

  • Mancera JM, Fernandez-Llebrez P, Perez-Figares JM (1990) Estudio immunocitoquimico del lobulo neural hipofisario de Natrix maura en deshidratacion. Rev Esp Fisiol 46:183–190

    PubMed  CAS  Google Scholar 

  • Minnich JE (1979) Reptiles. In: Maloiy GMO (ed) Comparative physiology of osmoregulation in animals. Academic, New York, pp 391–641

    Google Scholar 

  • Minnich JE (1982) The use of water. In: Gans C, Pough FH (eds) Biology of the Reptilia. Academic, New York, pp 325–395

    Google Scholar 

  • Morgan RC, Lazarow A (1963) Immunoassay of insulin: two antibody system. Diabetes 12:115–126

    Google Scholar 

  • Nagy KA (1973) Behaviour, diet and reproduction in a desert lizard, Sauromalus obesus. Copeia 1973:93–102

    Article  Google Scholar 

  • Pang PKT, Uchiyama M, Sawyer WH (1982) Endocrine and neural control of amphibian renal functions. Fed Proc 41:2365–2370

    PubMed  CAS  Google Scholar 

  • Parent A (1979) Monoaminergic systems of the brain. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the Reptilia. Academic, New York, pp 247–285

    Google Scholar 

  • Rice GE (1982) Plasma arginine vasotocin concentrations in the lizard Varanus gouldii (Gray) following water loading, salt loading and dehydration. Gen Comp Endocrinol 47:1–6

    Article  PubMed  CAS  Google Scholar 

  • Richmond CA (2003) The role of arginine vasopressin in thermoregulation during fever. J Neurosci Nurs 35:281–286

    PubMed  Google Scholar 

  • Rosenbloom AA, Fisher DA (1974) Radioimmunoassay of arginine vasotocin. Endocrinology 95:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Saint Girons H, Bradshaw SD (1981) Preliminary observation on behavioural thermoregulation in an elapid snake, the dugite, Pseudonaja affinis (Gunther). J Roy Soc West Aust 4:13–16

    Google Scholar 

  • Saint Girons H, Bradshaw SD, Bradshaw FJ (1993) Sexual activity and plasma levels of sex steroids in the Aspic viper, Vipera aspis L. (Reptilia, Viperidae). Gen Comp Endocrinol 91:287–297

    Article  PubMed  CAS  Google Scholar 

  • Scott IAW, Hayes JS, Keogh JS, Webb JK (2001) Isolation and characterization of novel microsatellite markers from the Australian Tiger snakes (Elapidae: Notechis) and amplification in the closely related genus Hoplocephalus. Mol. Ecol Notes 1:117–120

    Article  Google Scholar 

  • Shine R, Lambeck R (1990) Seasonal shifts in thermoregulatory behaviour of Australian Blacksnakes, Pseudechis porphyriacus (Elapidae). J Herp 24:302–308

    Article  Google Scholar 

  • Shoemaker VH, Nagy KA (1977) Osmoregulation in amphibians and reptiles. Ann Rev Physiol 39:449–471

    Article  CAS  Google Scholar 

  • Silveira PF, Schiripa LN, Carmona E, Picarelli ZP (1992) Circulating vasotocin in the snake Bothrops jararaca. Comp Biochem Physiol 103A:59–64

    Article  CAS  Google Scholar 

  • Silveira PF, Koike TI, Schiripa LN, Reichl AP, Magnoli FC (1998) Plasma arginine-vasotocin and hydroosmotic status of the terrestrial pit viper Bothrops jararaca. Gen Comp Endocrinol 109:336–346

    Article  PubMed  CAS  Google Scholar 

  • Smits AW (1984) Ecological and physiological correlates of water balance and body fluid compartmentation in the chuckwalla lizard, Sauromalus hispidus. Unpublished PhD dissertation, University of Kansas Lawrence, Kansas

  • Smits AW, Ward J, Lillywhite H (1986) Effects of hyperkalemia on thermoregulatory behaviors of the lizard, Sauromalus hispidus. Copeia 1986:520–523

    Article  Google Scholar 

  • Stallone JN, Braun EJ (1986a) Osmotic and volume regulation of plasma arginine vasotocin in conscious domestic fowl. Am J Physiol 250:R644–R657

    CAS  Google Scholar 

  • Stallone JN, Braun EJ (1986b) Regulation of plasma arginine vasotocin in conscious water-deprived domestic fowl. Am J Physiol 250:R658–R664

    CAS  Google Scholar 

  • Statsoft (1995) Statistica 5.1: general conventions and statistics. Statsoft, Tulsa

    Google Scholar 

  • Statsoft (2001) Statistica 6.0: general conventions and statistics. Statsoft, Tulsa

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall, New Jersey, 929 pp

    Google Scholar 

Download references

Acknowledgements

The School of Animal Biology and Centre for Native Animal Research, The University of Western Australia, provided funding for the research and UWA Ethics Committee approved all experimental procedures (AEC# 01/100/165). The Department of Conservation and Land Management (DCLM) issued licenses for the collection of animals (SF003795 & NE002981). Thanks to Jamie O’Shea and Stewart Ford for valuable comments on the MS and to Fabien Aubret for accompaniment in the field and to Xavier Bonnet for access to field data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Bradshaw.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladyman, M., Bradshaw, D. & Bradshaw, F. Physiological and hormonal control of thermal depression in the tiger snake, Notechis scutatus . J Comp Physiol B 176, 547–557 (2006). https://doi.org/10.1007/s00360-006-0077-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-006-0077-8

Keywords

Navigation