Skip to main content
Log in

Insect chitin synthases: a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Chitin is the most widespread amino polysaccharide in nature. The annual global amount of chitin is believed to be only one order of magnitude less than that of cellulose. It is a linear polymer composed of N-acetylglucosamines that are joined in a reaction catalyzed by the membrane-integral enzyme chitin synthase, a member of the family 2 of glycosyltransferases. The polymerization requires UDP–N-acetylglucosamines as a substrate and divalent cations as co-factors. Chitin formation can be divided into three distinct steps. In the first step, the enzymes‘ catalytic domain facing the cytoplasmic site forms the polymer. The second step involves the translocation of the nascent polymer across the membrane and its release into the extracellular space. The third step completes the process as single polymers spontaneously assemble to form crystalline microfibrils. In subsequent reactions the microfibrils combine with other sugars, proteins, glycoproteins and proteoglycans to form fungal septa and cell walls as well as arthropod cuticles and peritrophic matrices, notably in crustaceans and insects. In spite of the good effort by a hardy few, our present knowledge of the structure, topology and catalytic mechanism of chitin synthases is rather limited. Gaps remain in understanding chitin synthase biosynthesis, enzyme trafficking, regulation of enzyme activity, translocation of chitin chains across cell membranes, fibrillogenesis and the interaction of microfibrils with other components of the extracellular matrix. However, cumulating genomic data on chitin synthase genes and new experimental approaches allow increasingly clearer views of chitin synthase function and its regulation, and consequently chitin biosynthesis. In the present review, I will summarize recent advances in elucidating the structure, regulation and function of insect chitin synthases as they relate to what is known about fungal chitin synthases and other glycosyltransferases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abo-Elghar GE, Fujiyoshi P, Matsumura F (2004) Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem Mol Biol 34:743–752

    PubMed  CAS  Google Scholar 

  • Apple RT, Fristrom JW (1991) 20-Hydroxyecdysone is required for, and negatively regulates, transcription of Drosophila pupal cuticle protein genes. Dev Biol 146:569–582

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Hogenkamp DG, Zhu YC, Kramer KJ, Specht CA, Beeman RW, Kanost MR, Muthukrishnan S (2004) Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem Mol Biol 34:291–304

    Article  PubMed  CAS  Google Scholar 

  • Au-Young J, Robbins PW (1990) Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol 4:197–207

    PubMed  CAS  Google Scholar 

  • Baker FC, Tsai LW, Reuter CC, Schooley DA (1987) In vivo fluctuation of JH, JH acid, and ecdysteroid titer, and JH esterase activity during development of fifth stadium Manduca sexta. Insect Biochem 17:989–996

    Article  CAS  Google Scholar 

  • Barbehenn RV, Stannard J (2004) Antioxidant defense of the midgut epithelium by the peritrophic envelope in caterpillars. J Insect Physiol 50:783–790

    Article  PubMed  CAS  Google Scholar 

  • Barny MA, Schoonejans E, Economou A, Johnston AW, Downie JA (1996) The C-terminal domain of the Rhizobium leguminosarum chitin synthase NodC is important for function and determines the orientation of the N-terminal region in the inner membrane. Mol Microbiol 19:443–453

    Article  PubMed  CAS  Google Scholar 

  • Binnington KC (1985) Ultrastructural changes in the cuticle of the sheep blowfly, Lucilia, induced by certain insecticides and biological inhibitors. Tissue Cell 17:131–140

    Article  PubMed  CAS  Google Scholar 

  • Bollenbacher WE, Smith SL, Goodman W, Gilbert L I (1981) Ecdysteroid titer during larval-pupal-adult development of the tobacco hornworm, Manduca sexta. Gen Comp Endocrinol 44:302–306

    Article  PubMed  CAS  Google Scholar 

  • Bossuyt X, Blanckaert N (1993) Topology of nucleotide-sugar: dolichyl phosphate glycosyltransferases involved in the dolichol pathway for protein glycosylation in native rat liver microsomes. Biochem J 296:627–632

    PubMed  CAS  Google Scholar 

  • Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    Article  PubMed  CAS  Google Scholar 

  • Bownes M, Ronaldson E, Mauchline D (1996) 20-Hydroxyecdysone, but not juvenile hormone, regulation of yolk protein gene expression can be mapped to cis-acting DNA sequences. Dev Biol 173:475–489

    Article  PubMed  CAS  Google Scholar 

  • Bracker CE, Ruiz-Herrera J, Bartnicki-Garcia S (1976) Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci USA 73:4570–4574

    PubMed  CAS  Google Scholar 

  • Bulawa CE (1993) Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 47:505–534

    Article  PubMed  CAS  Google Scholar 

  • Bulawa CE, Slater M, Cabib E, Au-Young J, Sburlati A, Adair WL Jr, Robbins PW (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46:213–225

    Article  PubMed  CAS  Google Scholar 

  • Burkhard P, Stetefeld J, Strelkov SV (2001) Coiled coils: a highly versatile protein folding motif. Trends Cell Biol 11:82–88

    Article  PubMed  CAS  Google Scholar 

  • Cabib E, Farkas V (1971) The control of morphogenesis: an enzymatic mechanism for the initiation of septum formation in yeast. Proc Natl Acad Sci USA 68:2052–2056

    PubMed  CAS  Google Scholar 

  • Cabib E, Ulane R, Bowers B (1973) Yeast chitin synthetase. Separation of the zymogen from its activating factor and recovery of the latter in the vacuole fraction. J Biol Chem 248:1451–1458

    PubMed  CAS  Google Scholar 

  • Charnock SJ, Davies GJ (1999) Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38:6380–6385

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Anderson J B, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ et al (2003) MMDB: Entrez’s 3D-structure database. Nucleic Acids Res 31:474–477

    Article  PubMed  CAS  Google Scholar 

  • Choi WJ, Sburlati A, Cabib E (1994) Chitin synthase 3 from yeast has zymogenic properties that depend on both the CAL1 and the CAL3 genes. Proc Natl Acad Sci USA 91:4727–4730

    PubMed  CAS  Google Scholar 

  • Chuang JS, Schekman RW (1996) Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135:597–610

    Article  PubMed  CAS  Google Scholar 

  • Cohen E (1982) In vitro chitin synthesis in an insect: formation and structure of microfibrils. Eur J Cell Biol 26:289–294

    PubMed  CAS  Google Scholar 

  • Cohen E (1985) Chitin synthetase activity and inhibition in different insect microsomal preparations. EXS 41:470–472

    Article  CAS  Google Scholar 

  • Cohen E (1993) Chitin synthesis and degradation as targets for pesticide action. Arch Insect Biochem Physiol 22:245–261

    Article  PubMed  CAS  Google Scholar 

  • Cohen E (2001) Chitin synthesis and inhibition: a revisit. Pest Manag Sci 57:946–950

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Casida JE (1980) Inhibition of Tribolium gut chitin synthetase. Pestic Biochem Physiol 13:129–136

    Article  CAS  Google Scholar 

  • Cohen E, Casida JE (1980) Properties of Tribolium gut chitin synthetase. Pestic Biochem Physiol 13:121–128

    Article  CAS  Google Scholar 

  • Cos T, Ford RA, Trilla JA, Duran A, Cabib E, Roncero C (1998) Molecular analysis of Chs3p participation in chitin synthase III activity. Eur J Biochem 256:419–426

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  PubMed  CAS  Google Scholar 

  • Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) JPred: a consensus secondary structure prediction server. Bioinformatics 14:892–893

    Article  PubMed  CAS  Google Scholar 

  • Dahn U, Hagenmaier H, Hohne H, Konig WA, Wolf G, Zahner H (1976) Stoffwechselprodukte von Mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer Hemmstoff der Chitinsynthese bei Pilzen. Arch Microbiol 107:143–160

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis PL (1999) Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol Life Sci 56:670–682

    Article  PubMed  Google Scholar 

  • De Cock A, Degheele D (1991) Effects of buprofezin on the ultrastructure of the third instar cuticle of Trialeurodes vaporariorum. Tissue Cell 23:755–762

    Article  PubMed  Google Scholar 

  • De Cock A, Degheele D (1998) Buprofezin: a novel chitin synthesis inhibitor affecting specifically planthoppers, whiteflies and scale insects. In: Ishaaya I, Degheele D (eds) Insecticides with novel mode of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 74–91

    Google Scholar 

  • DeMarini DJ, Adams AE, Fares H, DeVirgilio C, Valle G, Chuang JS, Pringle JR (1997) A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139:75–93

    Article  PubMed  CAS  Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Dorstyn L, Colussi PA, Quinn LM, Richardson H, Kumar S (1999) DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci USA 96:4307–4312

    Article  PubMed  CAS  Google Scholar 

  • van Eck WH (1979) Mode of action of two bezoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem 9:295–300

    Article  Google Scholar 

  • Flores Martinez A, Schwencke J (1988) Chitin synthetase activity is bound to chitosomes and to the plasma membrane in protoplasts of Saccharomyces cerevisiae. Biochim Biophys Acta 946:328–336

    PubMed  CAS  Google Scholar 

  • Florez-Martinez A, Lopez-Romero E, Martinez JP, Bracker CE, Ruiz-Herrera J, Bartnicki-Garcia S (1990) Protein composition of purified chitosomes of Mucor rouxii. Exp Mycol 14:160–168

    Article  Google Scholar 

  • Ford RA, Shaw JA, Cabib E (1996) Yeast chitin synthases 1 and 2 consist of a non-homologous and dispensable N-terminal region and of a homologous moiety essential for function. Mol Gen Genet 252:420–428

    Article  PubMed  CAS  Google Scholar 

  • Fournet F, Sannier C, Moriniere M, Porcheron P, Monteny N (1995) Effects of two insect growth regulators on ecdysteroid production in Aedes aegypti (Diptera: Culicidae). J Med Entomol 32:588–593

    PubMed  CAS  Google Scholar 

  • Gagou M E, Kapsetaki M, Turberg A, Kafetzopoulos D (2002) Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis. Insect Biochem Mol Biol 32:141–146

    Article  PubMed  Google Scholar 

  • Giraud-Guille MM, Bouligand Y (1986) Chitin-protein molecular organization in arthropods. In: Muzzarelli R, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum, New York, pp 29–35

    Google Scholar 

  • Grosscurt AC (1978) Effect of diflubenzuron on mechanical penetrability, chitin formation, and structure of the eyltra of Leptinotarsa decemlineata. J Insect Physiol 24:827–831

    Article  CAS  Google Scholar 

  • Hawkins CJ, Yoo SJ, Peterson EP, Wang SL, Vernooy SY, Hay BA (2000) The Drosophila caspase DRONC cleaves following glutamate or aspartate and is regulated by DIAP1, HID, and GRIM. J Biol Chem 275:27084–27093

    PubMed  CAS  Google Scholar 

  • Hernandez J, Lopez-Romero E, Cerbon J, Ruiz-Herrera J (1981) Lipid analysis of chitosomes, chitin synthesizing microvesicles from Mucor rouxii. Exp Mycol 5:349–356

    CAS  Google Scholar 

  • Hiruma K, Hardie J, Riddiford LM (1991) Hormonal regulation of epidermal metamorphosis in vitro: control of expression of a larval-specific cuticle gene. Dev Biol 144:369–378

    Article  PubMed  CAS  Google Scholar 

  • Hiruma K, Carter MS, Riddiford LM (1995) Characterization of the dopa decarboxylase gene of Manduca sexta and its suppression by 20-hydroxyecdysone. Dev Biol 169:195–209

    Article  PubMed  CAS  Google Scholar 

  • Hogenkamp DG, Arakane Y, Zimoch L, Merzendorfer H, Kramer KJ, Beeman RW, Kanost MR, Specht CA, Muthukrishnan S (2005) Chitin synthase genes in Manduca sexta: characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development. Insect Biochem Mol Biol 35:529–540

    Article  PubMed  CAS  Google Scholar 

  • Hopkins TL, Harper MS (2001) Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch Insect Biochem Physiol 47:100–109

    Article  PubMed  CAS  Google Scholar 

  • Hori M, Kakiki K, Suzuki S, Misato T (1971) Studies on the mode of action of polyoxins. Part III. Relation of polyoxin structure to chitin synthatase inhibition. Agric Biol Chem 35:1280–1291

    CAS  Google Scholar 

  • Horsch M, Sowdhamini R (1996) A fold prediction for the catalytic domain of chitin synthases. In: Muzzarelli R (ed) Chitin enzymology, vol 2. Atec Edizioni, Italy, pp 447–458

  • Horst MN (1983) The biosynthesis of crustacean chitin. Isolation and characterization of polyprenol-linked intermediates from brine shrimp microsomes. Arch Biochem Biophys 223:254–263

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim GH, Smartt CT, Kiley LM, Christensen BM (2000) Cloning and characterization of a chitin synthase cDNA from the mosquito Aedes aegypti. Insect Biochem Mol Biol 30:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Imai T, Watanabe T, Yui T, Sugiyama J (2003) The directionality of chitin biosynthesis: a revisit. Biochem J 374:755–760

    Article  PubMed  CAS  Google Scholar 

  • Ishaaya I (1993) Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Arch Insect Biochem Physiol 22:263–276

    Article  PubMed  CAS  Google Scholar 

  • Ishaaya I, Casida JE (1974) Dietary TH-6040 alters cuticle composition and enzyme activity of housefly larval cuticle. Pestic Biochem Physiol 4:484–490

    Article  CAS  Google Scholar 

  • Ishaaya I, Mendelson Z, Melamed-Madjar V (1988) Effect of buprofezin on embryogenesis and progeny formation of sweetpotato whitefly (Homoptera; Aleyrodidae). J Econ Entomol 81:781–784

    CAS  Google Scholar 

  • Ishaaya I, Yablonski S, Mendelson Z, Mansour Y, Horowitz AR V (1996) Novaluron (MCW-275), a novel benzoylphenyl urea, suppressing developing stages of lepidopteran, whitefly and leafminer pests. In: Brighton crop conference (Pests and disease), pp 1013–1020

  • Isono K, Asahi K, Suzuki S (1969) Studies on polyoxins, antifungal antibiotics. XIII. The structure of polyoxins. J Am Chem Soc 91:7490–7505

    Article  PubMed  CAS  Google Scholar 

  • Izawa Y, Uchida M, Sugimoto T, Asai T (1985) Inhibition of chitin biosynthesis by buprofezin analogs in relation to their activity controlling Nilaparvata lugens Stål. Pestic Biochem Physiol 24:343–347

    Article  CAS  Google Scholar 

  • Jeckel D, Karrenbauer A, Burger KN, van Meer G, Wieland F (1992) Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol 117:259–267

    Article  PubMed  CAS  Google Scholar 

  • Jindra M, Malone F, Hiruma K, Riddiford LM (1996) Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Dev Biol 180:258–272

    Article  PubMed  CAS  Google Scholar 

  • Kamst E, Spaink PH (1999) Functional domains in the chitin oligosaccharide synthase NodC and related beta-polysaccharide synthases. Trends Glycosci Glycotechol 11:187–199

    CAS  Google Scholar 

  • Kanno H, Ikeda K, Asai T, Maekawa S (1981) 2-it tert-butylimino-3-isopropyl-5-phenylperhydro-1,3,5-thiodiazin-4-one (NNI-750), a new insecticide. Brighton Crop Protection 1:56–69

    Google Scholar 

  • Kapitonov D, Yu RK (1999) Conserved domains of glycosyltransferases. Glycobiology 9:961–978

    Article  PubMed  CAS  Google Scholar 

  • Kramer KJ, Koga D (1986) Insect chitin: Physical state, synthesis, degradation and metabolic regulation. Insect Biochem 16:851–877

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  PubMed  CAS  Google Scholar 

  • Leal-Morales CA, Bracker CE, Bartnicki-Garcia S (1988) Localization of chitin synthetase in cell-free homogenates of Saccharomyces cerevisiae: chitosomes and plasma membrane. Proc Natl Acad Sci USA 85:8516–8520

    PubMed  CAS  Google Scholar 

  • Leal-Morales CA, Bracker CE, Bartnicki-Garcia S (1994) Subcellular localization, abundance and stability of chitin synthetases 1 and 2 from Saccharomyces cerevisiae. Microbiology 140:2207–2216

    PubMed  CAS  Google Scholar 

  • Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42:525–550

    Article  PubMed  CAS  Google Scholar 

  • Locke M (1991) Insect epidermal cells. In: Binnington K, Retnakaran A (eds) Physiology of the insect epidermis. CRISCO Publications, Melbourne, pp 1–22

    Google Scholar 

  • Locke M, Huie P (1979) Apolysis and the turnover of plasma membrane plaques during cuticle formation in an insect. Tissue Cell 11:277–291

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Amin J, Voellmy R (1991) Ecdysterone receptor is a sequence-specific transcription factor involved in the developmental regulation of heat shock genes. Mol Cell Biol 11:3660–3675

    PubMed  CAS  Google Scholar 

  • Mayer RT, Chen AC, DeLoach JR (1980) Characterization of a chitin synthase from the stable fly, Stomoxys calcitrans (L.). Insect Biochem 10:549–556

    Article  CAS  Google Scholar 

  • Merz RA, Horsch M, Nyhlen LE, Rast DM (1999) Biochemistry of chitin synthase. EXS 87:9–37

    PubMed  CAS  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412

    Article  PubMed  CAS  Google Scholar 

  • Mills GL, Cantino EC (1980) The glycolipid involved in chitin synthesis by zoospores of blastocladiella emersonii is a monoglucosyldiacylglycerol. Exp Mycol 4:175–180

    CAS  Google Scholar 

  • Moussian B, Schwarz H, Bartoszewski S, Nüsslein-Volhard C (2005) Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J Morphol 264:117–130

    Article  PubMed  CAS  Google Scholar 

  • Mulder R, Gijswijk MT (1973) The laboratory evaluation of two promising new insecticides which interefere with cuticle formation. Pestic Sci 4:737–745

    CAS  Google Scholar 

  • Nagahashi S, Sudoh M, Ono N, Sawada R, Yamaguchi E, Uchida Y, Mio T, Takagi M, Arisawa M, Yamada-Okabe H (1995) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J Biol Chem 270:13961–13967

    Article  PubMed  CAS  Google Scholar 

  • Nagata T (1986) Timing of buprofezin application for control of the brown grashopper, Nilaparvata lugens Stål (Homoptera: Delphacidae). Appl Entomol Zool 21:357–362

    CAS  Google Scholar 

  • Nakagawa Y, Matsumura F (1994) Diflubenzuron affects gamma-thioGTP stimulated Ca2+ transport in vitro in intracellular vesicles from the integument of the newly molted American cockroach, Periplaneta americana L. Insect Biochem Mol Biol 24:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Oberlander H (1976) Hormonal control of growth and differentiation of insect tissues cultured in vitro. In Vitro 12:225–235

    PubMed  CAS  Google Scholar 

  • Ono N, Yabe T, Sudoh M, Nakajima T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H (2000) The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein-protein interaction. Microbiol 146:385–391

    CAS  Google Scholar 

  • Ostrowski S, Dierick HA, Bejsovec A (2002) Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 161:171–182

    PubMed  CAS  Google Scholar 

  • Palli SR, Hiruma K, Riddiford LM (1992) An ecdysteroid-inducible Manduca gene similar to the Drosophila DHR3 gene, a member of the steroid hormone receptor superfamily. Dev Biol 150:306–318

    Article  PubMed  CAS  Google Scholar 

  • Peters W (1992) Peritrophic membranes. In: Bradshaw SD, Burggren W, Heller HC, Ishii S, Langer H, Neuweiler G, Randall DJ (eds) Zoophysiology, vol 30. Springer, Berlin Heidelberg New York

  • Pittermann et al. (1997) Applications of chitin and chitosan. In: Muzzarelli RAA, Peter MG (eds) Chitin handbook. Atec Edizioni, Italy, pp 359–472

    Google Scholar 

  • Post LC, Vincent WR (1973) A new insecticide inhibits chitin synthesis. Naturwissenschaften 60:431–432

    Article  PubMed  CAS  Google Scholar 

  • Post LC, de Jong BJ, Vincent WR (1974) 1-(2,6-Disubstituted benzoyl)-3-phenylurea insecticides: inhibitors of chitin synthesis. Pestic Biochem Physiol 4:473–483

    Article  CAS  Google Scholar 

  • Quesada-Allue LA, Marechal LR, Belocopitow E (1976) Chitin synthesis in Triatoma infestans and other insects. Acta Physiol Lat Am 26:349–363

    PubMed  CAS  Google Scholar 

  • Reineke S, Wieczorek H, Merzendorfer H (2002) Expression of Manduca sexta V-ATPase genes mvB, mvG and mvd is regulated by ecdysteroids. J Exp Biol 205:1059–1067

    PubMed  CAS  Google Scholar 

  • Richmond T (2000) Higher plant cellulose synthases. Genome Biol 1:reviews3001.1–3001.6

    Google Scholar 

  • Riddiford LM (1994) Cellular and molecular actions of juvenile hormone I. General considerations and premetamorphic actions. Adv Insect Physiol 24:211–274

    Google Scholar 

  • Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48:597–636

    CAS  Google Scholar 

  • Ruiz-Herrera J, San-Blas G (2003) Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 3:77–91

    Article  PubMed  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr, Fevre M, Geremia RA, Henrissat B (1995) Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol 177:1419–1424

    PubMed  CAS  Google Scholar 

  • Saxena IM, Brown RM Jr, Dandekar T (2001) Structure-function characterization of cellulose synthase: relationship to other glycosyltransferases. Phytochemistry 57:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Sehnal F (1989) Hormonal role of ecdysteroids in insect larvae and during metamorphosis. In: Koolman J (ed) Ecdysone: from chemistry to mode of action. Thieme, Stuttgart, pp 262–270

    Google Scholar 

  • Silverman SJ, Sburlati A, Slater ML, Cabib E (1988) Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 85:4735–4739

    PubMed  CAS  Google Scholar 

  • Silverman SJ, Shaw JA, Cabib E (1991) Proteinase B is, indeed, not required for chitin synthetase 1 function in Saccharomyces cerevisiae. Biochem Biophys Res Commun 174:204–210

    Article  PubMed  CAS  Google Scholar 

  • Skehel JJ, Wiley DC (1998) Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95:871–874

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Rayment I (1996) Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J 70:1590–1602

    Article  PubMed  CAS  Google Scholar 

  • Soltani N, Chebira S, Delbecque JP, Delachambre J (1993) Biological-activity of flucycloxuron, a novel benzoylphenylurea derivative, on Tenebrio molitor—comparison with diflubenzuron and triflumuron. Experientia 49:1088–1091

    Article  CAS  Google Scholar 

  • Sudoh M, Tatsuno K, Ono N, Ohta A, Chibana H, Yamada Okabe H, Arisawa M (1999) The Candida albicans CHS4 gene complements a Saccharomyces cerevisiae skt5/chs4 mutation and is involved in chitin biosynthesis. Microbiology 145:1613–1622

    PubMed  CAS  Google Scholar 

  • Tellam RL, Eisemann C (2000) Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina. Insect Biochem Mol Biol 30:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Tellam RL, Vuocolo T, Johnson SE, Jarmey J, Pearson RD (2000) Insect chitin synthase cDNA sequence, gene organization and expression. Eur J Biochem 267:6025–6043

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Tomlin CDS (2003) The pesticide manual. British Crop Protection Council, Farnham

    Google Scholar 

  • Trilla JA, Cos T, Duran A, Roncero C (1997) Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13:795–807

    Article  PubMed  CAS  Google Scholar 

  • Turnbull IF, Howells AJ (1983) Integumental chitin synthase activity in cell-free extracts of larvae of the Australian sheep blowfly, Lucilia cuprina, and two other species of diptera. Aust J Biol Sci 36:251–262

    PubMed  CAS  Google Scholar 

  • Uchida M, Asai T, Sugimoto T (1985) Inhibition of cuticle deposition and chitin biosynthesis by a new insect growth regulator buprofezin in Nilaparvata lugens Stål. Agric Biol Chem 49:1233–1234

    CAS  Google Scholar 

  • Uchida Y, Shimmi O, Sudoh M, Arisawa M, Yamada-Okabe H (1996) Characterization of chitin synthase 2 of Saccharomyces cerevisiae. II: Both full size and processed enzymes are active for chitin synthesis. J Biochem (Tokyo) 119:659–666

    CAS  Google Scholar 

  • Ulane RE, Cabib E (1976) The activating system of chitin synthetase from Saccharomyces cerevisiae. Purification and properties of the activating factor. J Biol Chem 251:3367–3374

    PubMed  CAS  Google Scholar 

  • Unligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10:510–517

    Article  PubMed  CAS  Google Scholar 

  • Verloop A, Ferrell CD (1977) Benzoylphenyl ureas—a new group of larvicides interfering with chitin deposition. In: Plimmer JR (ed) Pesticide chemistry in the 20th Century, vol 37. ACS Symposium Series, American Chemical Society, Washington, DC, pp 237–270

  • Vermeulen CA, Wessels JG (1986) Chitin biosynthesis by a fungal membrane preparation. Evidence for a transient non-crystalline state of chitin. Eur J Biochem 158:411–415

    Article  PubMed  CAS  Google Scholar 

  • Vrielink A, Ruger W, Driessen HP, Freemont PS (1994) Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 13:3413–3422

    PubMed  CAS  Google Scholar 

  • Wagner GP (1994) Evolution and multi-functionality of the chitin system. EXS 69:559–577

    PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Ward GB, Mayer RT, Feldlaufer MF, Svoboda JA (1991) Gut chitin synthase and sterols from larvae of Diaprepes abbreviatus (Coleoptera, Curculionidae). Arch Insect Biochem Physiol 18:105–117

    Article  CAS  Google Scholar 

  • Wilson TG, Cryan JR (1997) Lufenuron, a chitin-synthesis inhibitor, interrupts development of Drosophila melanogaster. J Exp Zool 278:37–44

    Article  PubMed  CAS  Google Scholar 

  • Yabe T, Yamada-Okabe T, Nakajima T, Sudoh M, Arisawa M, Yamada-Okabe H (1998) Mutational analysis of chitin synthase 2 of Saccharomyces cerevisiae. Identification of additional amino acid residues involved in its catalytic activity. Eur J Biochem 258:941–947

    Article  PubMed  CAS  Google Scholar 

  • Yao TP, Forman BM, Jiang Z, Cherbas L, Chen JD, McKeown M, Cherbas P, Evans RM (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479

    Article  PubMed  CAS  Google Scholar 

  • Yarden O, Yanofsky C (1991) Chitin synthase 1 plays a major role in cell wall biogenesis in Neurospora crassa. Genes Dev 5:2420–2430

    PubMed  CAS  Google Scholar 

  • Yasui M, Fukada M, Mackawa S (1987) Effect of buprofezin on reproduction of the greenhouse whitefly, Trialeurodes vaporariorum (Westwood)(Homoptera: Aleyrodidae). Appl Entomol Zool 22:266–271

    CAS  Google Scholar 

  • Yeager AR, Finney NS (2004) The first direct evaluation of the two-active site mechanism for chitin synthase. J Org Chem 69:613–618

    Article  PubMed  CAS  Google Scholar 

  • Yeager AR, Finney NS (2004) Second-generation dimeric inhibitors of chitin synthase. Bioorg Med Chem 12:6451–6460

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Miller MJ (1999) Polyoxins and nikkomycins: progress in synthetic and biological studies. Curr Pharm Des 5:73–99

    PubMed  CAS  Google Scholar 

  • Zhu YC, Specht CA, Dittmer NT, Muthukrishnan S, Kanost MR, Kramer KJ (2002) Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta. Insect Biochem Mol Biol 32:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Ziman M, Chuang JS, Schekman RW (1996) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7:1909–1919

    PubMed  CAS  Google Scholar 

  • Zimoch L, Merzendorfer H (2002) Immunolocalization of chitin synthase in the tobacco hornworm. Cell Tissue Res 308:287–297

    Article  PubMed  CAS  Google Scholar 

  • Zimoch L, Hogenkamp DG, Kramer KJ, Muthukrishnan S, Merzendorfer H (2005) Regulation of chitin synthesis in the larval midgut of Manduca sexta. Insect Biochem Mol Biol 35:515–527

    Article  PubMed  CAS  Google Scholar 

  • Zubenko GS, Mitchell AP, Jones EW (1979) Septum formation, cell division, and sporulation in mutants of yeast deficient in proteinase B. Proc Natl Acad Sci USA 76:2395–2399

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Drs. Klaus Beyenbach and Helmut Wieczorek for critically reading the manuscript and also likes to thank Lars Zimoch, Ulla Mädler and Margret Düvel for the excellent cooperation. This work was supported by the Deutsche Forschungsgemeinschaft (grants Me2029/1-2 and SFB 431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Merzendorfer.

Additional information

Communicated by I.D. Hume

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzendorfer, H. Insect chitin synthases: a review. J Comp Physiol B 176, 1–15 (2006). https://doi.org/10.1007/s00360-005-0005-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-005-0005-3

Keywords

Navigation