Skip to main content
Log in

K+ transport in the caterpillar intestine epithelium: role of osmolytes for the K+-secretory capacity of the tobacco hornworm midgut

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The midgut of the tobacco hornworm, Manduca sexta, actively secretes potassium ions. This can be measured as short-circuit current (Isc) with the midgut mounted in an Ussing chamber and superfused with a high-K+ saline containing as its major osmolyte 166 mM sucrose. Iso-osmotic substitution of sucrose by non-metabolisable compounds (mannitol, urea, NaCl and the polyethylene glycols 200, 400 and 600) led to a dramatic, though reversible, drop in the current. Acarbose, a specific inhibitor of invertase (sucrase) in vertebrates and insects, had no detectable influence on Isc. Unexpectedly, after replacing sucrose iso-osmotically with the saccharides glucose, fructose, trehalose or raffinose, the K+ current could no longer be supported. However, all osmolytes smaller than sucrose (except for NaCl), metabolisable or not, initiated an immediate, quite uniform but transient, increase in Isc by about 20%, before its eventual decline far below the control value. Hypo-osmotic treatment by omission of sucrose also transiently increased the K+ current. Small osmolytes substituted for sucrose caused no transient Isc stimulation when the epithelium had been challenged before with hypo-osmolarity; however, the eventual decline in Isc could not be prevented. Our data seem inconsistent with a role of sucrose as energiser or simple osmolyte. Rather, we discuss here its possible role as analogous to that of sucrose in lower eukaryotes or plants, as an extra- and/or intracellular “compatible osmolyte” that stabilises structure and/or function of the proteins implicated in K+ transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramchek FJ, Blankemeyer JT, Harvey WR (1980) The size of the extracellular space in the isolated midgut of Manduca sexta. J Biol Phys 8:32–44

    Google Scholar 

  • Adams MD, Celniker SE, Holt RA, Evans CA et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Becker A, Schloder P, Steele JE, Wegener G (1996) The regulation of trehalose metabolism in insects. Experientia 52:433–439

    CAS  PubMed  Google Scholar 

  • Bell RA, Joachim FG (1974) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Ann Entomol Soc Am 69:365–373

    Google Scholar 

  • Bounias M (1982) Kinetic study of the inhibition of the honeybee haemolymph alpha-glucosidase in vitro by BAYe 4609, BAYg 4521 and BAYn 5595. Biochem Pharmacol 31:2769–2775

    Article  CAS  PubMed  Google Scholar 

  • Carroll J, Ellar DJ (1993) An analysis of Bacillus thuringiensis delta-endotoxin action on insect-midgut-membrane permeability using a light-scattering assay. Eur J Biochem 214:771–778

    CAS  PubMed  Google Scholar 

  • Chamberlin ME (1987) Enzyme activities and mitochondrial substrate oxidation in tobacco hornworm midgut. J Comp Physiol B 157:643–649

    CAS  Google Scholar 

  • Chamberlin ME (1989) Metabolic stimulation of transepithelial potential difference across the midgut of the tobacco hornworm. J Exp Biol 141:295–311

    Google Scholar 

  • Chao AC, Koch AR, Moffett DF (1989) Active chloride transport in isolated posterior midgut of tobacco hornworm (Manduca sexta). Am J Physiol 257:R752–R761

    CAS  PubMed  Google Scholar 

  • Chao AC, Koch AR, Moffett DF (1990) Basal membrane uptake in potassium-secreting cells of midgut of tobacco hornworm (Manduca sexta). Am J Physiol 258:R112–R119

    CAS  PubMed  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  CAS  PubMed  Google Scholar 

  • Dow JAT (1992) pH Gradients in lepidopteran midgut. J Exp Biol 172:355–376

    CAS  PubMed  Google Scholar 

  • Dow JAT, Peacock JM (1989) Microelectrode evidence for the electrical isolation of goblet cavities in Manduca sexta middle midgut. J Exp Biol 143:106–114

    Google Scholar 

  • Gräf R, Harvey WR, Wieczorek H (1996) Purification and properties of a cytosolic V1-ATPase. J Biol Chem 271:20908–20913

    Google Scholar 

  • Harvey WR, Nedergaard S (1964) Sodium-independent active transport of potassium in the isolated midgut of the Cecropia silkworm. Proc Nat Acad Sci USA 51:757–765

    CAS  PubMed  Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1983) Chemiosmotic potassium ion pump of insect epithelia. Am J Physiol 244:R163–R175

    CAS  PubMed  Google Scholar 

  • Harvey WR, Crawford DN, Spaeth DD (1990) Isolation, voltage clamping, and flux measurements in lepidopteran midgut. Methods Enzymol 192:599–608

    Article  CAS  PubMed  Google Scholar 

  • Haskell JR, Clemons RD, Harvey WR (1965) Active transport by the Cecropia midgut. I. Inhibitors, stimulants and potassium transport. J Cell Comp Physiol 65:45–56

    CAS  Google Scholar 

  • Heitlinger LA, Li BU, Murray RD, McClung HJ, Sloan HR, DeVore DR, Powers P (1991) Glucose flux from dietary disaccharides: all sugars are not absorbed at equal rates. Am J Physiol 261:G818–G822

    CAS  PubMed  Google Scholar 

  • Junankar PR, Kirk K (2000) Organic osmolyte channels: a comparative view. Cell Physiol Biochem 10:355–360

    Article  CAS  PubMed  Google Scholar 

  • Jungreis A, Vaughan GL (1977) Insensitivity of lepidopteran tissues to ouabain: absence of ouabain binding and Na+/K+-ATPase in larval and adult midgut. J Insect Physiol 23:503–509

    Article  CAS  Google Scholar 

  • Kirk K, Strange K (1998) Functional properties and physiological roles of organic solute channels. Annu Rev Physiol 60:719–739

    Article  CAS  PubMed  Google Scholar 

  • Klein U, Koch AR, Moffett DF (1996) Ion transport in lepidoptera. In: Lehane MH, Billingsley PF (eds) Biology of the insect midgut. Chapman and Hall, London

  • Koch A, Moffett DF (1987) Kinetics of extracellular solute movement in the isolated midgut of tobacco hornworm (Manduca sexta). J Exp Biol 133:199–214

    Google Scholar 

  • Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 11:707–726

    Article  CAS  PubMed  Google Scholar 

  • Lemoine R (2000) Sucrose transporters in plants: update on function and structure. Biochim Biophys Acta 1465:246–262

    Google Scholar 

  • Mandel LJ, Moffett DF, Riddle TG, Grafton MM (1980a) Coupling between oxidative metabolism and active transport in the midgut of tobacco hornworm. Am J Physiol 238:C1–C9

    CAS  PubMed  Google Scholar 

  • Mandel LJ, Riddle TG, Storey JM (1980b) Role of ATP in respiratory control and active transport in tobacco hornworm midgut. Am J Physiol 238:C10–C14

    CAS  PubMed  Google Scholar 

  • Moffett DF (1979) Bathing solution tonicity and potassium transport by the midgut of the tobacco hornworm. J Exp Biol 78:213–223

    CAS  Google Scholar 

  • Moffett DF, Koch AR (1983) The kinetics of active K+ transport by midgut epithelium of lepidopteran larvae: effects of divalent ions. J Exp Biol 105:403–405

    CAS  Google Scholar 

  • Moffett DF, Koch A (1992) Driving forces and pathways of H+ and K+ transport in insect midgut goblet cells. J Exp Biol 172:403–415

    CAS  PubMed  Google Scholar 

  • Moffett DF, Hudson RL, Moffett SB, Ridgway RL (1982) Intracellular K+ activities and cell membrane potentials in a K+-transporting epithelium, the midgut of tobacco hornworm (Manduca sexta). J Membr Biol 70:59–68

    CAS  Google Scholar 

  • Moffett DF, Koch A, Woods R (1995) Electrophysiology of K+ transport by midgut epithelium of lepidopteran larvae. III. Goblet valve patency. J Exp Biol 198:2103–2113

    CAS  PubMed  Google Scholar 

  • Naderi S, Saier MH Jr (1996) Plant sucrose: H+ symporters are homologous to the melibiose permease of Escherichia coli. Mol Microbiol 22:390–391

    CAS  PubMed  Google Scholar 

  • Nakanishi T, Balaban RS, Burg MB (1988) Survey of osmolytes in renal cell lines. Am J Physiol 255:C181–C191

    CAS  PubMed  Google Scholar 

  • Nectoux M, Bounias M, Popeskovic D (1995) Toxicology of cupric salts on honeybees. IV Gluconate and sulfate action on haemolymph trehalose activity in vivo and in vitro. J Biochem Toxicol 10:79–86

    Google Scholar 

  • Parenti P, Giordana B, Sacchi VF, Hanozet GM, Guerritore A (1985) Metabolic activity related to the potassium pump in the midgut of Bombyx mori larvae. J Exp Biol 116:69–78

    Google Scholar 

  • Parker JC (1993) In defense of cell volume? Am J Physiol 265:C1191–C1200

    CAS  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    Google Scholar 

  • Qu Y, Bolen CL, Bolen DW (1998) Osmolyte-driven contraction of a random coil protein. Proc Nat Acad Sci USA 95:9268–9273

    Article  CAS  PubMed  Google Scholar 

  • Reineke S, Wieczorek H, Merzendorfer H (2002) Expression of Manduca sexta V-ATPase genes mvB, mvG and mvd is regulated by ecdysteroids. J Exp Biol 205:1059–1067

    CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Sacchi VF, Wolfersberger MG (1996) Amino acid absorption. In: Lehane MH, Billingsley PF (eds) Biology of the insect midgut. Chapman and Hall, London

  • Schirmanns K, Zeiske W (1994a) An investigation of the midgut K+ pump of the tobacco hornworm (Manduca sexta) using specific inhibitors and amphotericin B. J Exp Biol 188:191–204

    Google Scholar 

  • Schirmanns K, Zeiske W (1994b) K+ channel permeation and block in the midgut epithelium of the tobacco hornworm Manduca sexta. J Exp Biol 197:179–200

    PubMed  Google Scholar 

  • Sola-Penna M, Ferreira-Pereira A, Lemos AP, Meyer-Fernandes JR (1997) Carbohydrate protection of enzyme structure and function against guanidinium chloride treatment depends on the nature of carbohydrate and enzyme. Eur J Biochem 248:24–29

    Google Scholar 

  • Sumner JP, Dow JAT, Earley FGP, Klein U, Jäger D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Google Scholar 

  • Thinnes FP, Reymann S (1997) New findings concerning vertebrate porin. Naturwissenschaften 84:480–498

    Article  CAS  PubMed  Google Scholar 

  • Thomas MV, May TE (1984) Active potassium ion transport across the caterpillar midgut. I. Tissue electrical properties and potassium ion transport inhibition. J Exp Biol 108:273–291

    CAS  Google Scholar 

  • Thompson SN (1999) Blood sugar formation from dietary carbohydrate is facilitated by the pentose phosphate pathway in an insect (Manduca sexta Linnaeus). Biochim Biophys Acta 1472:565–575

    Article  CAS  PubMed  Google Scholar 

  • Thompson SN, Redak RA (2000) Interactions of dietary protein and carbohydrate determine blood sugar level and regulate nutrient selection in the insect Manduca sexta L. Biochim Biophys Acta 1523:91–102

    Article  CAS  PubMed  Google Scholar 

  • Thompson SN, Borchardt DB, Wang LW (2003) Dietary nutrient levels regulate protein and carbohydrate intake, gluconeogenic/glycolytic flux and blood trehalose level in the insect Manduca sexta L. J Comp Physiol B 173:149–163

    CAS  PubMed  Google Scholar 

  • Treherne JE (1958) The absorption and metabolism of some sugars in the locust, Schistocerca gregaria (Forsk.). J Exp Biol 35:611–625

    CAS  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterisation of a broad selectivity neutral solute channel. J Biol Chem 273:24737–24743

    Google Scholar 

  • Turunen S, Crailsheim K (1996) Lipid and sugar absorption. In: Lehane MH, Billingsley PF (eds) Biology of the insect midgut. Chapman and Hall, London

  • Ushijima K, Riby JE, Fujisawa T, Kretchmer N (1995) Absorption of fructose by isolated small intestine of rats is via a specific saturable carrier in the absence of glucose and by the disaccharidase-related transport system in the presence of glucose. J Nutr 125:2156–64

    CAS  PubMed  Google Scholar 

  • Van Driessche W, Zeiske W (1985) Ionic channels in epithelial membranes. Physiol Rev 65:833–903

    PubMed  Google Scholar 

  • Weiss SL, Lee EA, Diamond J (1995) Evolutionary matches of enzyme and transporter capacities to dietary substrate loads in the intestinal brush border. Proc Nat Acad Sci USA 95:2117–2122

    Article  Google Scholar 

  • Wieczorek H, Weerth S, Schindlbeck M, Klein U (1989) A vacuolar-type proton pump in a vesicle fraction enriched with a potassium transporting plasma membrane from tobacco hornworm midgut. J Biol Chem 264:11143–11148

    Google Scholar 

  • Wieczorek H, Putzenlechner M, Zeiske W, Klein U (1991) A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane. J Biol Chem 266:15340–15347

    Google Scholar 

  • Wieczorek H, Grüber G, Harvey WR, Huss M, Merzendorfer H, Zeiske W (2000) Structure and regulation of insect plasma membrane H+-V-ATPase. J Exp Biol 203:127–135

    CAS  PubMed  Google Scholar 

  • Wolfersberger MG, Giangiacomo KM (1983) Active potassium transport by the isolated lepidopteran larval midgut: stimulation of net potassium flux and elimination of the slower phase decline of the short-circuit current. J Exp Biol 102:199–210

    CAS  Google Scholar 

  • Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eukaryotes. J Mol Evol 52:391–404

    CAS  PubMed  Google Scholar 

  • Zeiske W (1992) Insect ion homeostasis. J Exp Biol 172:323–334

    CAS  PubMed  Google Scholar 

  • Zeiske W, Van Driessche W, Ziegler R (1986) Current noise analysis of the basolateral route for K+ ions across a K+-secreting insect midgut epithelium (Manduca sexta). Pflügers Arch 407:657–663

    Google Scholar 

  • Zeiske W, Alpert G, Marin H (1990) The chloride-stimulated K+-secretion by insect midgut and its modification in the presence of osmotic gradients: a short-circuit current and noise-analysis study. J Basic Clin Physiol Pharmacol 1:399–404

    CAS  PubMed  Google Scholar 

  • Zeiske W, Schröder H, Alpert G (1992) K+ current stimulation by Cl in the midgut epithelium of tobacco hornworm (Manduca sexta). I. Kinetics and effect of Cl-site-specific agents. J Comp Physiol B 162:331–339

    CAS  PubMed  Google Scholar 

  • Zeiske W, Meyer H, Wieczorek H (2002) Insect midgut K+ secretion: concerted run-down of apical/basolateral transporters with extra-/intracellular acidity. J Exp Biol 205:463–474

    CAS  PubMed  Google Scholar 

  • Ziegler R (1999) Biochemie und Stoffwechsel. In: Dettner K, Peters W (eds) Lehrbuch der Entomologie. Gustav Fischer Verlag, Stuttgart

Download references

Acknowledgements

This research was supported by Deutsche Forschungsgemeinschaft grant SFB 431. We also thank S. Brunzel for some experimental help. The experiments as described in this publication comply with the laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Zeiske.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, H., Wieczorek, H. & Zeiske, W. K+ transport in the caterpillar intestine epithelium: role of osmolytes for the K+-secretory capacity of the tobacco hornworm midgut. J Comp Physiol B 174, 527–539 (2004). https://doi.org/10.1007/s00360-004-0441-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0441-5

Keywords

Navigation