Skip to main content

Respiration of individual honeybee larvae in relation to age and ambient temperature

Abstract

The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg−1 h−1 in 0.5-day-old larvae to 2.98±0.57 µl mg−1 h−1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg−1 h−1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg−1 h−1 CO2 at 18 °C, and 3.97±0.50 µl mg−1 h−1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

m :

body mass

R :

rate of development or respiration

T I :

inflexion point of a logistic (sigmoid) curve

T L :

lethal temperature

T O :

temperature of optimum (maximum) development

References

  • Allen MD (1959) Respiration rates of larvae of drone and worker honey bees, Apis mellifera. J Econ Entomol 52:399–402

    Google Scholar 

  • Bodenheimer FS (1937) Studies in animal populations. II. Seasonal population-trends of the honey-bee. Q Rev Biol 12:406–425

    Article  Google Scholar 

  • Büdel A (1955) Schwankungen der Lufttemperatur in der Wabengasse eines brütenden Bienenvolkes. Z Bienenforsch 3:88–92

    Google Scholar 

  • Bujok B, Kleinhenz M, Fuchs S, Tautz J (2002) Hot spots in the bee hive. Naturwissenschaften 89:299–301

    Article  CAS  PubMed  Google Scholar 

  • Esch H (1960) Über die Körpertemperaturen und den Wärmehaushalt von Apis mellifica. Z Vergl Physiol 43:305–335

    Google Scholar 

  • Fahrenholz L, Lamprecht I, Schricker B (1989) Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J Comp Physiol B 159:551–560

    Google Scholar 

  • Greenlee KJ, Harrison JF (2004) Development of respiratory function in the American locust Schistocerca americana I. Across-instar effects. J Exp Biol 207:497–508

    Article  PubMed  Google Scholar 

  • Harbo JR, Bolten AB (1981) Development times of male and female eggs of the honey bee. Ann Entomol Soc Am 74:504–506

    Google Scholar 

  • Haydak MH (1970) Honey bee nutrition. Annu Rev Entomol 15:143–156

    Article  Google Scholar 

  • Heinrich B (1981) The mechanisms and energetics of honeybee swarm temperature regulation. J Exp Biol 91:25–55

    Google Scholar 

  • Heinrich B (1993) The hot-blooded insects, strategies and mechanisms of thermoregulation. Springer, Berlin Heidelberg New York

  • Hepburn HR (1986) Honeybees and wax: an experimental natural history. Springer, Berlin New York

    Google Scholar 

  • Hepburn HR, Armstrong E, Kurstjens SP (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S Afr J Sci 79:416–417

    Google Scholar 

  • Hepburn HR, Kurstjens SP (1988) The combs of honeybees as composite materials. Apidologie 19:25–36

    Google Scholar 

  • Hess WR (1926) Die Temperaturregulierung im Bienenvolk. Z Vergl Physiol 4:465–487

    Google Scholar 

  • Himmer A (1932) Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biol Rev 7:224–253

    Google Scholar 

  • Kleinhenz M, Bujok B, Fuchs S, Tautz J (2003) Hot bees in empty broodnest cells: heating from within. J Exp Biol 206:4217–4231

    Article  PubMed  Google Scholar 

  • Kronenberg F, Heller HC (1982) Colonial thermoregulation in honey bees (Apis mellifera). J Comp Physiol B 148:65–76

    Google Scholar 

  • Leonhard B, Crailsheim K (1999) Temperature dependency of the oxygen consumption by a thorax homogenate of worker honeybees (Hymenoptera: Apidae). Entomol Gen 24:31–36

    Google Scholar 

  • Lindauer M (1954) Temperaturregulierung und Wasserhaushalt im Bienenstaat. Z Vergl Physiol 36:391–432

    Google Scholar 

  • Mackasmiel LAM, Fell RD (2000) Respiration rates in eggs of the honey bee, Apis mellifera. J Apic Res 39:125–135

    Google Scholar 

  • Melampy RM, Willis ER (1939) Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.). Physiol Zool 12:302–311

    CAS  Google Scholar 

  • Moritz RFA, Southwick EE (1992) Bees as superorganisms. Springer, Berlin Heidelberg New York

  • Ratte HT (1984) Temperature and insect development. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin Heidelberg New York, pp 33–66

  • Ritter W (1982) Experimenteller Beitrag zur Thermoregulation des Bienenvolks (Apis mellifera L.). Apidologie 13:169–195

    Google Scholar 

  • Ritter W, Koeniger N (1977) Influence of the brood on the thermoregulation of honeybee colonies. Proceedings of the 8th Congress of the IUSSI, Wageningen, pp 283–284

  • Rothe U, Nachtigall W (1989) Flight of the honey bee. IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J Comp Physiol B 158:739–749

    Google Scholar 

  • Schmaranzer S, Stabentheiner A, Heran H (1987) Thermografie bei Bienen. Film C2046 of the ÖWF Wien, Österreichisches Bundesinstitut für den Wissenschaftlichen Film. Accompanying publication: Schmaranzer S, Stabentheiner A, Heran H (1988) Wiss Film 38/39:64–68

  • Schmolz E, Lamprecht I (2000) Calorimetric investigations on activity states and development of holometabolous insects. Thermochim Acta 349:61–68

    Article  CAS  Google Scholar 

  • Schmolz E, Hoffmeister D, Lamprecht I (2002) Calorimetric investigations on metabolic rates and thermoregulation of sleeping honeybees (Apis mellifera carnica). Thermochim Acta 382:221–227

    Article  CAS  Google Scholar 

  • Seeley TD (1974) Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies. J Insect Physiol 20:2301–2305

    Article  CAS  PubMed  Google Scholar 

  • Shuel RW, Dixon SE (1959) Studies in the mode of action of royal jelly in honeybee development II. Respiration of newly emerged larvae on various substrates. Can J Zool 37:803–813

    CAS  Google Scholar 

  • Stabe HA (1930) The rate of growth of worker, drone and queen larvae of the honeybee, Apis mellifera Linn. J Econ Entomol 23:447–453

    Google Scholar 

  • Stabentheiner A, Vollmann J, Kovac H, Crailsheim K (2003) Oxygen consumption and body temperature of active and resting honeybees. J Insect Physiol 49:881–889

    Article  CAS  Google Scholar 

  • Tautz J, Maier S, Groh C, Rössler W, Brockmann A (2003) Behavioral performance in adult honeybees is influenced by the temperature experienced during their pupal development. Proc Natl Acad Sci USA 100:7343–7347

    Article  CAS  PubMed  Google Scholar 

  • Wang DI (1965) Growth rates of young queen and worker honeybee larvae. J Apic Res 4:3–6

    Google Scholar 

  • Wheeler GC, Wheeler J (1979) Larvae of the social hymenoptera. In: Hermann HR (ed) Social insects I. Academic Press, New York, pp 287–338

  • Wieser W (1986) Bioenergetik: Energietransformationen bei Organismen. Thieme, Stuttgart

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

Download references

Acknowledgements

We are greatly indebted to Stefan K. Hetz (Lehrstuhl für Tierphysiologie, Humboldt-Universität zu Berlin) for many tips and self-sacrificing technical help, and to E. Stabentheiner for measurements of air CO2 content in Graz. The research was supported by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung (FWF). The authors declare that the experiments performed in the production of this article comply with the current laws of the Republic of Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Stabentheiner.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petz, M., Stabentheiner, A. & Crailsheim, K. Respiration of individual honeybee larvae in relation to age and ambient temperature. J Comp Physiol B 174, 511–518 (2004). https://doi.org/10.1007/s00360-004-0439-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0439-z

Keywords

  • Apis
  • Honeybee larva
  • Respiration
  • CO2 production
  • Temperature