Skip to main content
Log in

Na+ gradient-dependent transport of hypoxanthine by calf intestinal brush border membrane vesicles

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The properties of hypoxanthine transport were investigated in purified brush border membrane vesicles isolated from calf proximal and distal jejunum. Hypoxanthine uptake in the vesicles was stimulated by a transmembrane Na+ gradient and an inside negative potential resulting in a transient accumulation of intravesicular hypoxanthine, especially in the proximal jejunum. Na+-dependent hypoxanthine uptake at this site seemed to occur by two saturable transport systems, a high affinity (Km=0.33 μmol/l) and a low affinity (Km=165 μmol/l) transporter. Guanine, hypoxanthine, thymine and uracil inhibited intravesicular hypoxanthine uptake, whereas adenine and the nucleosides inosine and thymidine were without effect. These findings represent the first demonstration of active Na+ gradient-dependent nucleobase transport in intestinal brush border membrane vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

BBM :

brush border membrane

BBMV :

brush border membrane vesicles

BLM :

basolateral membrane

PD:

potential difference

Vmax:

maximal transport capacity

References

  • Adjei AA, Yamamato S, Kulkarni A (1995) Nucleic acids and/or their components: a possible role in immune function. J Nutr Vitaminol 41:1–16

    CAS  Google Scholar 

  • Bronk JR, Hastewell JG (1987) The transport of pyrimidines into tissue rings cut from the rat small intestine. J Physiol 382:475–488

    CAS  PubMed  Google Scholar 

  • Bronk JR, Lister N, Lynch S (1987) Absorption of 5-fluorouracil and related pyrimidines in rat small intestine. Clin Sci 72:705–716

    CAS  PubMed  Google Scholar 

  • Csáky TZ (1961) Significance of sodium ions in active intestinal transport of nonelectrolytes. Am J Physiol 201:999–1001

    Google Scholar 

  • Giesecke D, Tiemeyer W (1982) Availability and metabolism of purines of single-cell proteins in monogastric animals. Proc Nutr Soc 41:319–327

    CAS  PubMed  Google Scholar 

  • Gil Hernandez A, Sanchez-Medina F (1981) The determination of acid soluble nucleotides in milk by improved enzymic methods: a comparison with the ion-exchange column chromatography procedure. J Sci Food Agric 32:1123–1131

    PubMed  Google Scholar 

  • Greife HA (1984) Enteraler und intermediärer Nucleinsäurenstoffwechsel. Übers Tierernährg 12:1-44

  • Griffith DA, Jarvis SM (1994) Characterization of a sodium-dependent concentrative nucleobase-transport system in guinea-pig kidney cortex brush-border membrane vesicles. Biochem J 303:901–905

    CAS  PubMed  Google Scholar 

  • Griffith DA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153–181

    CAS  PubMed  Google Scholar 

  • He Y, Sanderson IR, Walker WA (1994) Uptake, transport and metabolism of exogenous nucleosides in intestinal epithelial cell cultures. J Nutr 124:1942–1949

    CAS  PubMed  Google Scholar 

  • Hopfer U (1977) Isolated membrane vesicles as tools for analysis of epithelial transport. Am J Physiol 233: E445–E449

    CAS  PubMed  Google Scholar 

  • Katgeli BW, Bridges RJ, Rummel W (1986) Inhibition of intestinal transport of uracil by hexoses and amino acids. Biochim Biophys Acta 862:429–434

    PubMed  Google Scholar 

  • Kessler M, Acuto O, Storelli C, Murer H, Müller M, Semenza G (1978a) A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Biochim Biophys Acta 506:136–154

    CAS  PubMed  Google Scholar 

  • Kessler M, Tannenbaum V, Tannenbaum C (1978b) A simple apparatus for performing short-time (1–2 seconds) uptake measurements in small volumes: its application to D-glucose transport studies in brush border vesicles from rabbit jejunum and ileum. Biochim Biophys Acta 509:348–359

    CAS  PubMed  Google Scholar 

  • Kobata A, Ziro S, Kido M (1962) The acid-soluble nucleotides of milk: I. Quantitative and qualitative differences of nucleotides constituents in human and cow's milk. J Biochem 51:277–287

    CAS  Google Scholar 

  • Kolassa N, Stengg R, Turnheim K (1977) Salvage of adenosine, inosine, hypoxanthine, and adenine by the isolated epithelium of guinea pig jejunum. Can J Physiol Pharmacol 55:1039–1044

    CAS  PubMed  Google Scholar 

  • López-Navarro AT, Ortega MA, Paragón J, Bueno JD, Gil A, Sánchez-Pozo A (1996) Deprivation of dietary nucleotides decreases protein synthesis in the liver and jejunum in rats. Gastroenterology 110:1760–1769

    PubMed  Google Scholar 

  • McAllan AB (1982) The fate of nucleic acids in ruminants. Proc Nutr Soc 41:309–317

    CAS  PubMed  Google Scholar 

  • Ngo LY, Patil SD, Unadkat JD (2001) Ontogenic and longitudinal activity of Na+-nucleoside transporters in the human intestine. Am J Physiol 280:G475–G481

    CAS  Google Scholar 

  • Patil SD, Unadkat JD (1997) Sodium-dependent nucleoside transport in the human intestinal brush-border membrane. Am J Physiol 272: G1314–G1320

    CAS  PubMed  Google Scholar 

  • Parsons DS, Shaw MI (1983) Use of high performance liquid chromatography to study absorption and metabolism of purines in rat jejunum in vitro. Quart J Exp Physiol 100:1553–1563

    Google Scholar 

  • Preston RL, Schaeffer JF, Curran PF (1974) Structure-affinity relationship of substrates for the neutral amino acid transport system in rabbit ileum. J Gen Physiol 64:443–467

    CAS  PubMed  Google Scholar 

  • Raezke KP, Frister H, Pabst K, Schlimme E (1988) Ribonucleoside als minore Milchinhaltsstoffe. II. Untersuchung des Ribonucleosidmusters in Rohmilch während der zweiten Hälfte der Laktationsphase. Milchwissenschaft 43:294–298

    CAS  Google Scholar 

  • Roden M, Paterson ARP, Turnheim K (1991) Sodium-dependent nucleoside transport in rabbit intestinal epithelium. Gastroenterology 100:1553–1562

    CAS  PubMed  Google Scholar 

  • Rosskopf R, Rainer H, Giesecke D (1991) Purin- und Pyrimidinemetaboliten zur Beurteilung des Pansenstoffwechsels: HPLC-Analysen in Milch und Blutplasma. Arch Anim Nutr Berlin 41:411–426

    CAS  Google Scholar 

  • Sachs L (1992) Angewandte Statistik, 7th edn. Springer, Berlin Heidelberg New York

  • Schanker LS, Tocco DJ (1960) Active transport of some pyrimidines across the rat intestinal epithelium. J Pharmacol Exp Ther 128:115–121

    CAS  Google Scholar 

  • Schanker LS, Jeffrey JJ, Tocco DJ (1963) Interaction of purines with the pyrimidine transport process of the small intestine. Biochem Pharmacol 12:1047–1053

    CAS  Google Scholar 

  • Scharrer E, Amann B (1979) Active intestinal transport of uracil in sheep. Ann Rech Vet 10:467–469

    CAS  PubMed  Google Scholar 

  • Scharrer E, Amann B (1980) Intestinal transport of amino acids and pyrimidines in sheep. Third EAAP Symposium on Protein Metabolism, Braunschweig. Europ Assoc Anim Prod Publ 27:149–158

    CAS  Google Scholar 

  • Scharrer E, Grenacher B (2001) Active intestinal absorption of nucleosides by Na+-dependent transport across the brush border membrane in cows. J Dairy Sci 84:614–619

    CAS  PubMed  Google Scholar 

  • Scharrer E, Grenacher B (2002) Properties of Na+-dependent nucleoside transport in the proximal and distal small intestine of cows. J Comp Physiol B 172: 191–196

    CAS  PubMed  Google Scholar 

  • Scharrer E, Wolffram S (1987) Absorption of nutrients in carnivorous animals. In: Edney ATP (ed) Nutrition, malnutrition and dietetics in the dog and cat. Proceedings of an international symposium held in Hanover 1987, pp 6–10

  • Scharrer E, Raab W, Tiemeyer W, Amann B (1981) Active absorption of hypoxanthine by lamb-jejunum in vitro. Pflügers Arch 391:41–43

    Google Scholar 

  • Scharrer E, Stubenhofer L, Tiemeyer W, Bindl C (1984) Active pyrimidine absorption by chicken colon. Comp Biochem Physiol A 77: 85–88

    CAS  PubMed  Google Scholar 

  • Sonoda T, Tatibana M (1978) Metabolism fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochim Biophys Acta 521:55–66

    CAS  PubMed  Google Scholar 

  • Stevens BR, Wright SH, Hirayama BS, Gauther RD, Ross HJ, Harms V, Nord E, Kippen I, Wright EM (1982) Organic and inorganic transport in renal and intestinal membrane vesicles preserved in liquid nitrogen. Membrane Biochem 4:271–282

    CAS  Google Scholar 

  • Theisinger A, Grenacher B, Rech KS, Scharrer E (2002) Nucleosides are efficiently absorbed by Na+-dependent transport across the intestinal brush border membrane in veal calves. J Dairy Sci 85:2308–2314

    CAS  PubMed  Google Scholar 

  • Tiemeyer W, Stohrer M, Giesecke D (1984) Metabolites of nucleic acids in bovine milk. J Dairy Sci 67:723–728

    CAS  PubMed  Google Scholar 

  • Uauy R, Stringel G, Thomas R, Quan R (1990) Effect of dietary nucleosides on growth and maturation of the developing gut in the rat. J Pediatr Gastroent Nutr 10:497–505

    CAS  Google Scholar 

  • Wilson, TH (1962) Absorption, WB Saunders, Philadelphia, pp 204–211

  • Wilson DW, Wilson HC (1962) Studies in vitro of digestion and absorption of purine ribonucleotides by the intestine. J Biol Chem 237:1643–1647

    CAS  Google Scholar 

  • Wolffram S, Eggenberger E, Scharrer E (1989) Kinetics of D-glucose transport across the intestinal brush-border membrane of the cat. Comp Biochem Physiol A 94:111–115

    CAS  PubMed  Google Scholar 

  • Wolffram S, Bisang B, Grenacher B, Scharrer E (1990) Transport of tri- and dicarboxylic acids across the intestinal brush-border membrane of calves. J Nutr 120:767–774

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the H. Wilhelm Schaumann Stiftung. We gratefully acknowledge the help of Professor S. Wolffram, Institut für Tierernährung und Stoffwechselphysiologie, Universität Kiel, regarding kinetic analysis of pertinent data. The experiments comply with the current laws of Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Scharrer.

Additional information

Communicated by G. Heldmaier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theisinger, A., Grenacher, B. & Scharrer, E. Na+ gradient-dependent transport of hypoxanthine by calf intestinal brush border membrane vesicles. J Comp Physiol B 173, 165–170 (2003). https://doi.org/10.1007/s00360-002-0324-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-002-0324-6

Key words

Navigation