Abstract
As the largest and most diverse vertebrate group on the planet, fishes have evolved an impressive array of sensory abilities to overcome the challenges associated with navigating the aquatic realm. Among these, the ability to detect Earth’s magnetic field, or magnetoreception, is phylogenetically widespread and used by fish to guide movements over a wide range of spatial scales ranging from local movements to transoceanic migrations. A proliferation of recent studies, particularly in salmonids, has revealed that fish can exploit Earth’s magnetic field not only as a source of directional information for maintaining consistent headings, but also as a kind of map for determining location at sea and for returning to natal areas. Despite significant advances, much about magnetoreception in fishes remains enigmatic. How fish detect magnetic fields remains unknown and our understanding of the evolutionary origins of vertebrate magnetoreception would benefit greatly from studies that include a wider array of fish taxa. The rich diversity of life-history characteristics that fishes exhibit, the wide variety of environments they inhabit, and their suitability for manipulative studies, make fishes promising subjects for magnetoreception studies.
Similar content being viewed by others
Availability of data and materials
Not applicable.
Code availability
Not applicable.
References
Albert L, Deschamps F, Jolivet A, Olivier F, Chauvaud L, Chauvaud S (2020) A current synthesis on the effects of electric and magnetic fields emitted by submarine power cables on invertebrates. Mar Environ Res 159:104958. https://doi.org/10.1016/j.marenvres.2020.104958
Alerstam T, Gudmundsson GA, Green M, Hedenstrom A (2001) Migration along orthodromic sun compass routes by Arctic birds. Science 2911:300–303
Anderson JM, Clegg TM, Véras LVMVQ, Holland KN (2017) Insight into shark magnetic field perception from empirical observations. Sci Rep 7:11042. https://doi.org/10.1038/s41598-017-11459-8
Aoyama J (2009) Life history and evolution of migration in catadromous eels (Genus Anguilla). Aqua-BioSci Monogr 2:1. https://doi.org/10.5047/absm.2009.00201.0001
Aranda G, Abascal FJ, Varela JL, Medina A (2013) Spawning behaviour and post-spawning migration patterns of Atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE 8:e76445. https://doi.org/10.1371/journal.pone.0076445
Arniella MB, Fitak RR, Johnsen S (2018) Unmapped sequencing reads identify additional candidate genes linked to magnetoreception in rainbow trout. Environ Biol Fish 101:711–721. https://doi.org/10.1007/s10641-018-0731-5
Azumaya T, Sato S, Urawa S, Nagasawa T (2016) Potential role of the magnetic field on homing in chum salmon (Oncorhynchus keta) tracked from the open sea to coastal Japan. North Pac Anadromous Fish Comm 6:235–241
Balay SD, Widen SA, Waskiewicz AJ (2020) Analysis of zebrafish cryptochrome 2 and 4 expression in UV cone photoreceptors. Gene Expr Patterns 35:119100. https://doi.org/10.1016/j.gep.2020.119100
Beamish FWH (1979) Migration and spawning energetics of the anadromous sea lamprey, Petromyzon marinus. Environ Biol Fish 4:3–7. https://doi.org/10.1007/BF00005922
Becker G (1964) Reaktion von insekten auf magnetfelder, elektrische felder und atmospherics. Zeitschrift Für Angew Entomol 54:75–88. https://doi.org/10.1111/j.1439-0418.1964.tb02917.x
Becker G (1974) Influence of the Earth’s magnetic field on the directional behavior of gold fish. Naturwissenschaften 61:220–221
Block BA (2001) Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293:1310–1314. https://doi.org/10.1126/science.1061197
Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63. https://doi.org/10.1038/nature01226
Bonfil R, Meÿer M, Scholl MC, Johnson R, O’Brien S, Oosthuizen H, Swanson S, Kotze D, Paterson M (2005) Transoceanic migration, spatial dynamics, and population linkages of white sharks. Integr Comp Biol 310:100–103. https://doi.org/10.1126/science.1114898
Bottesch M, Gerlach G, Halbach M, Bally A, Kingsford MJ, Mouritsen H (2016) A magnetic compass that might help coral reef fish larvae return to their natal reef. Curr Biol 26:R1266–R1267. https://doi.org/10.1016/j.cub.2016.10.051
Bracis C, Anderson JJ (2012) An investigation of the geomagnetic imprinting hypothesis for salmon. Fish Oceanogr 21:170–181. https://doi.org/10.1111/j.1365-2419.2012.00617.x
Branover GG, Vasil’yev AS, Gleyzer SI, Tsinober AB (1971) A study of the behavior of the eel in natural and artificial and magnetic fields and an analysis of its receptor mechanism. J Ichthyol 11:608–614
Brothers JR, Lohmann KJ (2015) Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles. Curr Biol 25:392–396. https://doi.org/10.1016/j.cub.2014.12.035
Brothers JR, Lohmann KJ (2018) Evidence that magnetic navigation and geomagnetic imprinting shape spatial genetic variation in sea turtles. Curr Biol 28:1325-1329.e2. https://doi.org/10.1016/j.cub.2018.03.022
Brothers EB, Williams DMCB, Sale PF (1983) Length of larval life in twelve families of fishes at One Tree Lagoon, Great Barrier Reef, Australia. Mar Biol 76:319–324. https://doi.org/10.1007/BF00393035
Brown FA, Brett WJ, Bennett MF, Barnwell FH (1960) Magnetic response of an organism and its solar relationships. Biol Bull 118:367–381. https://doi.org/10.2307/1538815
Cain SD, Boles LC, Wang JH, Lohmann KJ (2005) Magnetic orientation and navigation in marine turtles, lobsters, and molluscs: concepts and conundrums. Integr Comp Biol 45:539–546. https://doi.org/10.1093/icb/45.3.539
Carey FG, Scharold JV (1990) Movements of blue sharks (Prionace glauca) in depth and course. Mar Biol 106:329–342. https://doi.org/10.1007/BF01344309
Chew GL, Brown GE (1989) Orientation of rainbow trout (Salmo gairdneri) in normal and null magnetic fields. Can J Zool 67:641–643. https://doi.org/10.1139/z89-092
Cresci A, De Rosa R, Fraissinet S, Scanu M, Putman NF, Agnisola C (2018) Zebrafish “personality” influences sensitivity to magnetic fields. Acta Ethol 21:195–201. https://doi.org/10.1007/s10211-018-0292-9
Cresci A, De Rosa R, Putman NF, Agnisola C (2017a) Earth-strength magnetic field affects the rheotactic threshold of zebrafish swimming in shoals. Comp Biochem Physiol A 204:169–176. https://doi.org/10.1016/j.cbpa.2016.11.019
Cresci A, Durif CMF, Paris CB, Shema SD, Skiftesvik AB, Browman HI (2019a) Glass eels (Anguilla anguilla) imprint the magnetic direction of tidal currents from their juvenile estuaries. Commun Biol 2:1–8. https://doi.org/10.1038/s42003-019-0619-8
Cresci A, Paris CB, Durif CMF, Shema S, Bjelland RM, Skiftesvik AB, Browman HI (2017b) Glass eels (Anguilla anguilla) have a magnetic compass linked to the tidal cycle. Sci Adv 3:e1602007. https://doi.org/10.1126/sciadv.1602007
Cresci A, Paris CB, Foretich MA, Durif CMF, Shema SD, O’Brien CE, Vikebø FB, Skiftesvik AB, Browman HI (2019b) Atlantic Haddock (Melanogrammus aeglefinus) larvae have a magnetic compass that guides their orientation. iScience 19:1173–1178. https://doi.org/10.1016/j.isci.2019.09.001
Cronin TW, Forward RB (1979) Tidal vertical migration: an endogenous rhythm in estuarine crab larvae. Science 205:1020–1022. https://doi.org/10.1126/science.205.4410.1020
Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302. https://doi.org/10.1038/35018561
Durif CMF, Browman HI, Phillips JB, Skiftesvik AB, Vøllestad LA, Stockhausen HH (2013) Magnetic compass orientation in the European eel. PLoS ONE 8:e59212. https://doi.org/10.1371/journal.pone.0059212
Emlen ST, Emlen JT (1966) A technique for recording migratory orientation of captive birds. Auk 83:361–367. https://doi.org/10.2307/4083048
Ernst DA, Lohmann KJ (2016) Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception. J Exp Biol 219:1827–1832. https://doi.org/10.1242/jeb.136036
Ernst DA, Fitak RR, Schmidt M, Derby CD, Johnsen S, Lohmann KJ (2020) Pulse magnetization elicits differential gene expression in the central nervous system of the Caribbean spiny lobster, Panulirus argus. J Comp Physiol A 206:725–742. https://doi.org/10.1007/s00359-020-01433-7
Faraday M (1832) Experimental researches in electricity. Philos Trans R Soc 122:125–162. https://doi.org/10.1098/rstl.1832.0006
Fitak RR, Wheeler BR, Ernst DA, Lohmann KJ, Johnsen S (2017) Candidate genes mediating magnetoreception in rainbow trout (Oncorhynchus mykiss). Biol Lett 13:20170142. https://doi.org/10.1098/rsbl.2017.0142
Fitak RR, Wheeler BR, Johnsen S (2020) Effect of a magnetic pulse on orientation behavior in rainbow trout (Oncorhynchus mykiss). Behav Process 172:104058. https://doi.org/10.1016/j.beproc.2020.104058
Formicki K, Bonisławska M, Jasiński M (1997) Spatial orientation of trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walb.) embryos in natural and artificial magnetic fields. Acta Ichthyol Piscat 27:29–40. https://doi.org/10.3750/AIP1997.27.2.03
Formicki K, Sadowski M, Tański A, Korzelecka-Orkisz A, Winnicki A (2004) Behaviour of trout (Salmo trutta L.) larvae and fry in a constant magnetic field. J App Ichthyol 20:290–294. https://doi.org/10.1111/j.1439-0426.2004.00556.x
Fox CH, Gibb AC, Summers AP, Bemis WE (2018) Benthic walking, bounding, and maneuvering in flatfishes (Pleuronectiformes: Pleuronectidae): new vertebrate gaits. J Zool 130:19–29. https://doi.org/10.1016/j.zool.2018.07.002
Gegear RJ, Casselman A, Waddell S, Reppert SM (2008) Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454:1014–1018. https://doi.org/10.1038/nature07183
Gerlach G, Atema J, Kingsford MJ, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. PNAS 104:858–863. https://doi.org/10.1073/pnas.0606777104
Hart V, Kušta T, Němec P, Bláhová V, Ježek M, Nováková P, Begall S, Červený J, Hanzal V, Malkemper EP, Štípek K, Vole C, Burda H (2012) Magnetic alignment in carps: evidence from the Czech Christmas fish market. PLoS ONE 7:e51100. https://doi.org/10.1371/journal.pone.0051100
Haugh CV, Walker MM (1998) Magnetic discrimination learning in rainbow trout (Oncorhynchus mykiss). J Navig 51:35–45. https://doi.org/10.1017/S0373463397007595
Hellinger J, Hoffmann KP (2009) Magnetic field perception in the Rainbow Trout, Oncorhynchus mykiss. J Comp Physiol A 195:873–879. https://doi.org/10.1007/s00359-009-0466-z
Hellinger J, Hoffmann KP (2012) Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both? J Comp Physiol A 198:593–605. https://doi.org/10.1007/s00359-012-0732-3
Hilgers L, Schwarzer J (2019) The untapped potential of medaka and its wild relatives. Elife 8:e46994. https://doi.org/10.7554/eLife.46994
Holland RA (2010) Differential effects of magnetic pulses on the orientation of naturally migrating birds. J R Soc Interface 7:1617–1625. https://doi.org/10.1098/rsif.2010.0159
Hunt RD, Ashbaugh RC, Reimers M, Udpa L, Saldana De Jimenez G, Moore M, Gilad AA, Pelled G (2021) Swimming direction of the glass catfish is responsive to magnetic stimulation. PLoS ONE 16:e0248141. https://doi.org/10.1371/journal.pone.0248141
Johnsen S, Lohmann K, Warrant E (2020) Animal navigation: a noisy magnetic sense? J Exp Biol. https://doi.org/10.1242/jeb.164921
Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712. https://doi.org/10.1038/nrn1745
Johnsen S, Lohmann KJ (2008) Magnetoreception in animals. Phys Today 61:29–35. https://doi.org/10.1063/1.2897947
Kalmijn AJ (1966) Electro-perception in sharks and rays. Nature 212:1232–1233. https://doi.org/10.1038/2121232b0
Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383. https://doi.org/10.1242/jeb.55.2.371
Kalmijn AJ (1973) Electro-orientation in sharks and rays: theory and experimental evidence. Scripps Inst Oceanography 39:1–22
Kalmijn AJ (1978) Experimental evidence of geomagnetic orientation in elasmobranch fishes. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, Heidelberg, pp 347–353
Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918. https://doi.org/10.1126/science.7134985
Karlsson L (1985) Behavioural responses of European silver eels (Anguilla anguilla) to the geomagnetic field. Helgolander Meeresunters 39:71–81. https://doi.org/10.1007/BF01997522
Keller BA, Putman NF, Grubbs RD, Portnoy DS, Murphy TP (2021) Map-like use of Earth’s magnetic field in sharks. Curr Biol 31:1–6. https://doi.org/10.1016/j.cub.2021.03.103
Kimchi T, Terkel J (2001) Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J Exp Biol 204:751–758
Kirschvink JL, Dizon AE, Westphal JA (1986) Evidence from strandings for geomagnetic sensitivity in cetaceans. J Exp Biol 120:1–24
Kirschvink JL, Walker MM, Chang SB, Dizon AE, Peterson KA (1985) Chains of single-domain magnetite particles in chinook salmon, Oncorhynchus tshawytscha. J Comp Physiol 157:375–381. https://doi.org/10.1007/BF00618127
Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11:462–467. https://doi.org/10.1016/S0959-4388(00)00235-X
Klimley AP (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Mar Biol 117:1–22. https://doi.org/10.1007/BF00346421
Klimley AP, Putman NF, Keller BA, Noakes D (2021) A call to assess the impacts of electromagnetic fields from subsea cables on the movement ecology of marine migrants. Cons Sci Practice 3:e436. https://doi.org/10.1111/csp2.436
Klinowska M (1985) Cetacean live stranding sites relate to geomagnetic topography. Aquat Mamm 1:27–32
Krylov VV, Osipova EA, Pavlova VV, Batrakova AA (2016) Influence of magnetic field on the spatial orientation in zebrafish (Danio rerio) (Cyprinidae) and Roach (Rutilus rutilus) (Cyprinidae). J Ichthyol 56:456–461. https://doi.org/10.1134/S0032945216030073
Light P, Salmon M, Lohmann K (1993) Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J Exp Biol 182:1–10
Lin CY, Chiang CY, Tsai HJ (2016) Zebrafish and Medaka: new model organisms for modern biomedical research. J Biomed Sci 23:19. https://doi.org/10.1186/s12929-016-0236-5
Lohmann KJ (2001) Regional magnetic fields as navigational markers for Sea turtles. Science 294:364–366. https://doi.org/10.1126/science.1064557
Lohmann KJ (2010) Magnetic-field perception. Nature 464:1140–1142. https://doi.org/10.1038/4641140a
Lohmann KJ, Ernst D (2013) The geomagnetic sense of crustaceans and its use in orientation and navigation. Crustacean nervous systems and their control of behavior. Oxford University Press, pp 321–336
Lohmann KJ, Lohmann CMF (2019) There and back again: Natal homing by magnetic navigation in sea turtles and salmon. J Exp Biol 6(222):jeb184077. https://doi.org/10.1242/jeb.184077
Lohmann KJ, Hester JT, Lohmann CMF (1999) Long-distance navigation in sea turtles. Ethol Ecol Evol 11(1):1–23. https://doi.org/10.1080/08927014.1999.9522838
Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909–910. https://doi.org/10.1038/428909a
Lohmann KJ, Lohmann CMF, Endres CS (2008a) The sensory ecology of ocean navigation. J Exp Biol 211:1719–1728. https://doi.org/10.1242/jeb.015792
Lohmann KJ, Lohmann CMF, Putman NF (2007) Magnetic maps in animals: nature’s GPS. J Exp Biol 210:3697–3705. https://doi.org/10.1242/jeb.001313
Lohmann KJ, Pentcheff ND, Nevitt GA, Stetten GD, Zimmer-Faust RK, Jarrard HE, Boles LC (1995) Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J Exp Biol 198:2041–2048. https://doi.org/10.1242/jeb.198.10.2041
Lohmann KJ, Putman NF, Lohmann CM (2012) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:336–342. https://doi.org/10.1016/j.conb.2011.11.005
Lohmann KJ, Putman NF, Lohmann CMF (2008b) Geomagnetic imprinting: a unifying hypothesis of long-distance natal homing in salmon and sea turtles. PNAS 105:19096–19101. https://doi.org/10.1073/pnas.0801859105
Lohmann KJ, Willows AO (1987) Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235:331–334. https://doi.org/10.1126/science.3798115
McCleave JD, Rommel SA, Cathcart CL (1971) Weak electric and magnetic fields in fish orientation. Ann NY Acad Sci 188:270–281. https://doi.org/10.1111/j.1749-6632.1971.tb13103.x
McElhinny MW, McFadden PL (1999) Paleomagnetism: continents and oceans. Elsevier, New York
Meyer CG, Holland KN, Papastamatiou YP (2005) Sharks can detect changes in the geomagnetic field. J R Soc Interface 2:129–130. https://doi.org/10.1098/rsif.2004.0021
Minkoff D, Putman NF, Atema J, Ardren WR (2020) Nonanadromous and anadromous Atlantic salmon differ in orientation responses to magnetic displacements. Can J Fish Aquat Sci 77:1846–1852. https://doi.org/10.1139/cjfas-2020-0094
Molteno TCA, Kennedy WL (2009) Navigation by induction-based magnetoreception in elasmobranch fishes. J Biophys 2009:1–6. https://doi.org/10.1155/2009/380976
Moore A, Riley WD (2009) Magnetic particles associated with the lateral line of the European eel Anguilla anguilla. J Fish Biol 74:1629–1634. https://doi.org/10.1111/j.1095-8649.2009.02197.x
Myklatun A, Lauri A, Eder SHK, Cappetta M, Shcherbakov D, Wurst W, Winklhofer M, Westmeyer GG (2018) Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception. Nat Commun 9:802. https://doi.org/10.1038/s41467-018-03090-6
Naisbett-Jones LC, Putman NF, Scanlan MM, Noakes DLG, Lohmann KJ (2020) Magnetoreception in fishes: the effect of magnetic pulses on orientation of juvenile Pacific salmon. J Exp Biol 18:223. https://doi.org/10.1242/jeb.222091
Naisbett-Jones LC, Putman NF, Stephenson JF, Ladak S, Young KA (2017) A magnetic map leads juvenile European eels to the Gulf Stream. Curr Biol 27:1236–1240. https://doi.org/10.1016/j.cub.2017.03.015
Netušil R, Tomanová K, Chodáková L, Chvalová D, Doležel D, Ritz T, Vácha M (2021) Cryptochrome-dependent magnetoreception in heteropteran insect continues even after 24 hours in darkness. J Exp Biol 224:19. https://doi.org/10.1242/jeb.243000
Newton KC, Kajiura SM (2017) Magnetic field discrimination, learning, and memory in the yellow stingray (Urobatis jamaicensis). Anim Cogn 20:603–614. https://doi.org/10.1007/s10071-017-1084-8
Newton KC, Kajiura SM (2020a) The yellow stingray (Urobatis jamaicensis) can use magnetic field polarity to orient in space and solve a maze. Mar Biol 167:36. https://doi.org/10.1007/s00227-019-3643-9
Newton KC, Kajiura SM (2020b) The yellow stingray (Urobatis jamaicensis) can discriminate the geomagnetic cues necessary for a bicoordinate magnetic map. Mar Biol 167:151. https://doi.org/10.1007/s00227-020-03763-1
Nimpf S, Nordmann GC, Kagerbauer D, Malkemper EP, Landler L, Papadaki-Anastasopoulou A, Ushakova L, Wenninger-Weinzierl A, Novatchkova M, Vincent P, Lendl T, Colombini M, Mason MJ, Keays DA (2019) A putative mechanism for magnetoreception by electromagnetic induction in the pigeon inner ear. Curr Biol 29:4052-4059.e4. https://doi.org/10.1016/j.cub.2019.09.048
Nishi T, Kawamura G (2005) Anguilla japonica is already magnetosensitive at the glass eel phase. J Fish Biol 67:1213–1224. https://doi.org/10.1111/j.1095-8649.2005.00817.x
Nishi T, Archdale MV, Kawamura G (2018) Behavioural evidence for the use of geomagnetic cue in Japanese glass eel Anguilla japonica orientation. Ichthyol Res 65:161–164. https://doi.org/10.1007/s10228-017-0587-2
Nishi T, Kawamura G, Matsumoto K (2004) Magnetic sense in the Japanese eel, Anguilla japonica, as determined by conditioning and electrocardiography. J Exp Biol 207:2965–2970. https://doi.org/10.1242/jeb.01131
Nishi T, Kawamura G, Sannomiya S (2005) Anosmic Japanese eel Anguilla japonica can no longer detect magnetic fields. Fisheries Sci 71:101–106. https://doi.org/10.1111/j.1444-2906.2005.00936.x
Nordmann GC, Hochstoeger T, Keays DA (2017) Magnetoreception—a sense without a receptor. PLoS Biol 15:e2003234. https://doi.org/10.1371/journal.pbio.2003234
O’Connell CP, Abel DC, Gruber SH, Stroud EM, Rice PH (2011a) Response of juvenile lemon sharks, Negaprion brevirostris, to a magnetic barrier simulating a beach net. Ocean Coastal Manag 54:225–230. https://doi.org/10.1016/j.ocecoaman.2010.11.006
O’Connell CP, Abel DC, Rice PH, Stroud EM, Simuro NC (2010) Responses of the southern stingray (Dasyatis americana) and the nurse shark (Ginglymostoma cirratum) to permanent magnets. Mar Freshw Behav Physiol 43:63–73. https://doi.org/10.1080/10236241003672230
O’Connell CP, Abel DC, Stroud EM, Rice PH (2011b) Analysis of permanent magnets as elasmobranch bycatch reduction devices in hook-and-line and longline trials. Fish Bull 109:394–401
O’Connell CP, Guttridge TL, Gruber SH, Brooks J, Finger JS, He P (2014a) Behavioral modification of visually deprived lemon sharks (Negaprion brevirostris) towards magnetic fields. J Exp Mar Biol Ecol 453:131–137. https://doi.org/10.1016/j.jembe.2014.01.009
O’Connell CP, He P, Joyce J, Stroud EM, Rice PH (2014b) Effects of the SMARTTM (Selective Magnetic and Repellent-Treated) hook on spiny dogfish catch in a longline experiment in the Gulf of Maine. Ocean Coastal Manag 97:38–43. https://doi.org/10.1016/j.ocecoaman.2012.08.002
O’Connell CP, Hyun SY, Gruber SH, He P (2015) Effects of barium-ferrite permanent magnets on great hammerhead shark Sphyrna mokarran behavior and implications for future conservation technologies. Endanger Species Res 26:243–256. https://doi.org/10.3354/esr00629
O’Connell CP, Hyun SY, Rillahan CB, He P (2014c) Bull shark (Carcharhinus leucas) exclusion properties of the sharksafe barrier and behavioral validation using the ARIS technology. Glob Ecol Conserva 2:300–314. https://doi.org/10.1016/j.gecco.2014.10.008
O’Connor J, Muheim R (2017) Pre-settlement coral-reef fish larvae respond to magnetic field changes during the day. J Exp Biol 220:2874–2877. https://doi.org/10.1242/jeb.159491
Ogura M, Kato M, Arai N, Sasada T, Sakaki Y (1992) Magnetic particles in chum salmon (Oncorhynchus keta): extraction and transmission electron microscopy. Can J Zool 70:874–877. https://doi.org/10.1139/z92-124
Osipova EA, Pavlova VV, Nepomnyashchikh VA, Krylov VV (2016) Influence of magnetic field on zebrafish activity and orientation in a plus maze. Behav Process 122:80–86. https://doi.org/10.1016/j.beproc.2015.11.009
Phillips JB, Borland SC (1992) Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144. https://doi.org/10.1038/359142a0
Putman NF, Jenkins ES, Michielsens CGJ, Noakes DLG (2014a) Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon. J R Soc Interface 11:20140542. https://doi.org/10.1098/rsif.2014.0542
Putman NF, Lohmann KJ, Putman EM, Quinn TP, Klimley AP, Noakes DLG (2013) Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon. Curr Biol 23:312–316. https://doi.org/10.1016/j.cub.2012.12.041
Putman NF, Meinke AM, Noakes DLG (2014b) Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout. Biol Lett 10:20140169. https://doi.org/10.1098/rsbl.2014.0169
Putman NF, Naisbett-Jones LC, Stephenson JF, Ladak S, Young KA (2017) Response to Durif et al. Curr Biol 27:R1000–R1001. https://doi.org/10.1016/j.cub.2017.08.046
Putman NF, Scanlan MM, Billman EJ, O’Neil JP, Couture RB, Quinn TP, Lohmann KJ, Noakes DLG (2014c) An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr Biol 24:446–450. https://doi.org/10.1016/j.cub.2014.01.017
Putman NF, Scanlan MM, Pollock AM, O’Neil JP, Couture RB, Stoner JS, Quinn TP, Lohmann KJ, Noakes DLG (2018) Geomagnetic field influences upward movement of young Chinook salmon emerging from nests. Biol Lett 14:20170752. https://doi.org/10.1098/rsbl.2017.0752
Putman NF, Williams CR, Gallagher EP, Dittman AH (2020) A sense of place: pink salmon use a magnetic map for orientation. J Exp Biol 223:4. https://doi.org/10.1242/jeb.218735
Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137:243–248. https://doi.org/10.1007/BF00657119
Quinn TP (1984) An experimental approach to fish compass and map orientation. In: McCleave JD, Arnold GP, Dodson JJ, Neill WH (eds) Mechanisms of migration in fishes. Springer, US, Boston, MA, pp 113–123
Quinn TP (2018) The behavior and ecology of Pacific salmon and trout, 2nd edn. University of Washington Press
Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol 147:547–552. https://doi.org/10.1007/BF00612020
Quinn TP, Groot C (1983) Orientation of chum salmon (Oncorhynchus keta) after internal and external magnetic field alteration. Can J Fish Aquat Sci 40:10. https://doi.org/10.1139/f83-185
Quinn TP, Groot C (1987) The homing migration of sockeye salmon to the Fraser River. Fish Bull 85:455–469
Quinn TP, Merrill RT, Brannon EL (1981) Magnetic field detection in sockeye salmon. J Exp Zool 217:137–142. https://doi.org/10.1002/jez.1402170114
Rigg DP, Peverell SC, Hearndon M, Seymour JE (2009) Do elasmobranch reactions to magnetic fields in water show promise for bycatch mitigation? Mar Freshwater Res 60:942–948. https://doi.org/10.1071/MF08180
Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718. https://doi.org/10.1016/S0006-3495(00)76629-X
Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429(6988):177–180. https://doi.org/10.1038/nature02534
Roberts JL (1975) Active branchial and ram gill ventilation in fishes. Biol Bull 148:85–105. https://doi.org/10.2307/1540652
Rommel SA, McCleave JD (1973) Sensitivity of American eels (Anguilla rostrata) and Atlantic salmon (Salmo salar) to weak electric and magnetic fields. J Fish Res Bd Can 30:657–663. https://doi.org/10.1139/f73-114
Scanlan MM, Putman NF, Pollock AM, Noakes DLG (2018) Magnetic map in nonanadromous Atlantic salmon. Proc Nat Acad Sci USA 115:10995–10999. https://doi.org/10.1073/pnas.1807705115
Shaw J, Boyd A, House M, Woodward R, Mathes F, Cowin G, Saunders M, Baer B (2015) Magnetic particle-mediated magnetoreception. J R Soc Interface 12:20150499. https://doi.org/10.1098/rsif.2015.0499
Shcherbakov D, Winklhofer M, Petersen N, Steidle J, Hilbig R, Blum M (2005) Magnetosensation in zebrafish. Curr Biol 15:R161–R162. https://doi.org/10.1016/j.cub.2005.02.039
Siegenthaler A, Niemantsverdriet PRW, Laterveer M, Heitkönig IMA (2016) Aversive responses of captive sandbar sharks Carcharhinus plumbeus to strong magnetic fields. J Fish Biol 89:1603–1611. https://doi.org/10.1111/jfb.13064
Skiles DD (1985) The geomagnetic field: its nature, history, and biological relevance. In: Kirschvink JL, Jones JL, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms: a new biomagnetism, Plenum Press, New York, London, pp 43–102
Smith LE, O’Connell CP (2014) The effects of neodymium-iron-boron permanent magnets on the behaviour of the small spotted catshark (Scyliorhinus canicula) and the thornback skate (Raja clavata). Ocean Coast Manag 97:44–49. https://doi.org/10.1016/j.ocecoaman.2013.05.010
Souza JJ, Poluhowich JJ, Guerra RJ (1988) Orientation responses of American eels, Anguilla rostrata, to varying magnetic fields. Comp Biochem Physiol 90:57–61. https://doi.org/10.1016/0300-9629(88)91005-5
Takebe A, Furutani T, Wada T, Koinuma M, Kubo Y, Okano K, Okano T (2012) Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation. Sci Rep 2:727. https://doi.org/10.1038/srep00727
Taylor PB (1986) Experimental evidence for geomagnetic orientation in juvenile salmon, Oncorhynchus tschawytscha Walbaum. J Fish Biol 28:607–623. https://doi.org/10.1111/j.1095-8649.1986.tb05196.x
Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q, Xie M, Gao C, Ye Y, Duan M, Zhou Z (2019) The use of zebrafish (Danio rerio) as biomedical models. Anim Front 9:68–77. https://doi.org/10.1093/af/vfz020
Tesch FW (1974) Influence of geomagnetism and salinity on the directional choice of eels. Helgolander Wiss Meeresunters 26:382–395. https://doi.org/10.1007/BF01627623
Tesch FW (2003) The eel. Blackwell Science, Oxford
Tesch FW, Lelek A (1973) Directional behaviour of transplanted stationary and migratory forms of the eel, Anguilla anguilla, in a circular tank. Neth J Sea Res 7:46–52. https://doi.org/10.1016/0077-7579(73)90031-8
Tesch FW, Wendt T, Karlsson L (1992) Influence of geomagnetism on the activity and orientation of the eel, Anguilla anguilla (L.), as evident from laboratory experiments. Ecol Freshw Fish 1:52–60. https://doi.org/10.1111/j.1600-0633.1992.tb00007.x
Ugolini A, Pezzani A (1995) Magnetic compass and learning of the Y-axis (sea-land) direction in the marine isopod Idotea baltica basteri. Anim Behav 50:295–300. https://doi.org/10.1006/anbe.1995.0245
Varanelli CC, Mccleave JD (1974) Locomotor activity of Atlantic salmon parr (Salmo salar L.) in various light conditions and in weak magnetic fields. Anim Behav 22:178–186. https://doi.org/10.1016/S0003-3472(74)80067-9
Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294. https://doi.org/10.1038/sj.hdy.6800635
Walcott C, Green RP (1974) Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184:180–182. https://doi.org/10.1126/science.184.4133.180
Walker MM (1984) Learned magnetic field discrimination in yellowfin tuna, Thunnus albacares. J Comp Physiol 155:673–679. https://doi.org/10.1007/BF00610853
Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376. https://doi.org/10.1038/37057
Walker MM, Diebel CE, Kirschvink JL (2003) Detection and use of the Earth’s magnetic field by aquatic vertebrates. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York, NY, pp 53–74
Walker MM, Kirschvink JL, Ahmed G, Dizon AE (1992) Evidence that fin whales respond to the geomagnetic field during migration. J Exp Biol 171:67–78. https://doi.org/10.1242/jeb.171.1.67
Walker MM, Kirschvink JL, Chang SBR, Dizon AE (1984) A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacares. Science 224:751–753. https://doi.org/10.1126/science.224.4650.751
Walker MM, Quinn TP, Kirschvink JL, Groot C (1988) Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka. J Exp Biol 140:51–63. https://doi.org/10.1242/jeb.140.1.51
Wan G, Hayden AN, Iiams SE, Merlin C (2021) Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat Comm 12:771. https://doi.org/10.1038/s41467-021-21002-z
Wiltschko W, Merkel FW (1966) Orientierung zugunruhiger Rotkehlchen im statischen magnetfeld. Verh Der Dtsch Zoolog Ges 59:362–367
Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64
Wiltschko W, Wiltschko R (1991) Magnetic orientation and celestial cues in migratory orientation. In: Berthold P (ed) Orientation in birds. Basel, Birkhäuser, pp 16–37
Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, New York
Wiltschko W, Wiltschko R (1999) The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula. J Comp Physiol A 184:295–299. https://doi.org/10.1007/s003590050327
Wiltschko W, Munro U, Ford H, Wiltschko R (1993) Magnetic inclination compass: A basis for the migratory orientation of birds in the Northern and Southern Hemisphere. Experientia 49:167–210. https://doi.org/10.1007/BF01989423
Wiltschko W, Munro U, Wiltschko R, Kirschvink JL (2002) Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J Exp Biol 205:3031–3037. https://doi.org/10.1242/jeb.205.19.3031
Wootton R (1990) Ecology of teleost fishes. Chapman & Hall, London
Wynn J, Padget O, Mouritsen H, Perrins C, Guilford T (2020) Natal imprinting to the Earth’s magnetic field in a pelagic seabird. Curr Biol 30:2869-2873.e2. https://doi.org/10.1016/j.cub.2020.05.039
Yano A, Ogura M, Sato A, Sakaki Y, Shimizu Y, Baba N, Nagasawa K (1997) Effect of modified magnetic field on the ocean migration of maturing chum salmon, Oncorhynchus keta. Mar Biol 129:523–530. https://doi.org/10.1007/s002270050193
Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, Kyriacou CP, Wilcockson DC (2013) Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol 23:1863–1873. https://doi.org/10.1016/j.cub.2013.08.038
Zimmerman MA, McCleave JD (1975) Orientation of elvers of American eels (Anguilla rostrata) in weak magnetic and electric fields. Helgolander Wiss Meeresunters 27:175–189. https://doi.org/10.1007/BF01611805
Acknowledgements
We thank E. G. Tsai and S. M. Schoolfield for assistance with the literature search. We thank E. Vitucci, C. Lohmann, P. Klimley and T. Quinn for detailed and insightful comments on drafts of this manuscript.
Funding
Supported by a grant from the Air Force Office of Scientific Research (FA9550-20-1-0399 to KJL).
Author information
Authors and Affiliations
Contributions
Both authors were involved in drafting and revising the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The author declares that there is no conflict of interest.
Additional information
This paper is dedicated to the memory of Prof. David L. Noakes.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Naisbett-Jones, L.C., Lohmann, K.J. Magnetoreception and magnetic navigation in fishes: a half century of discovery. J Comp Physiol A 208, 19–40 (2022). https://doi.org/10.1007/s00359-021-01527-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00359-021-01527-w