Skip to main content

Visual control of refuge recognition in the whip spider Phrynus marginemaculatus

Abstract

Amblypygids, or whip spiders, are nocturnally active arachnids which live in structurally complex environments. Whip spiders are excellent navigators that can re-locate a home refuge without relying on visual input. Therefore, an open question is whether visual input can control any aspect of whip spider spatial behavior. In the current study, Phrynus marginemaculatus were trained to locate an escape refuge by discriminating between differently oriented black and white stripes placed either on the walls of a testing arena (frontal discrimination) or on the ceiling of the same testing arena (overhead discrimination). Regardless of the placement of the visual stimuli, the whip spiders were successful in learning the location of the escape refuge. In a follow-up study of the overhead discrimination, occluding the median eyes was found to disrupt the ability of the whip spiders to locate the shelter. The data support the conclusion that whip spiders can rely on vision to learn and recognize an escape shelter. We suggest that visual inputs to the brain’s mushroom bodies enable this ability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data available in supplementary tables.

Code availability

Not applicable.

References

  1. Beck L, Görke K (1974) Tagesperiodik, Revierverhalten und Beutefang der Geisselspinne Admetus pumilio C. L Koch Im Freiland Z Tierpsychol 35:173–186

    CAS  Article  Google Scholar 

  2. Beck L, Foelix R, Gödeke E, Kaiser R (1977) Morphologie, Larvalentwicklung und Haarsensillen des Tastbeinpaares der Geißelspinne Heterophrynus longicornis Butler (Arach., Amblypygi). Zoomorphol 88:259–276

    Article  Google Scholar 

  3. Bingman VP, Graving JM, Hebets EA, Wiegmann DD (2017) Importance of the antenniform legs, but not vision, for homing by the neotropical whip spider Paraphrynus Laevifrons. J Exp Biol 220:885–890. https://doi.org/10.1242/jeb.149823

    Article  PubMed  Google Scholar 

  4. Casto P, Gosser J, Wiegmann DD, Hebets EA, Bingman VP (2019) Self-derived chemical cues support home refuge recognition in the whip spider Phrynus marginemaculatus (Amblypygi: Phrynidae). J Arachnol 47(2):290–292. https://doi.org/10.1636/joa-s-18-067

    Article  Google Scholar 

  5. Casto P, Wiegmann DD, Coppola VJ, Nardi D, Hebets EA, Bingman VP (2020) Vertical-surface navigation in the Neotropical whip spider Paraphrynus laevifrons (Arachnida: Amblypygi). Anim Cogn 23(6):1205–1213. https://doi.org/10.1007/s10071-020-01420-0

    Article  PubMed  Google Scholar 

  6. Cheng K (2012) Arthropod navigation: ants, bees, crabs, spiders finding their way. In: Zentall TR, Wasserman EA (eds) The oxford handbook of comparative cognition. Oxford University Press, New York, pp 347–365

    Google Scholar 

  7. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the central australian desert ant Melophorus bagoti. Behav Process 80(3):261–268. https://doi.org/10.1016/j.beproc.2008.10.015

    Article  Google Scholar 

  8. Collett M (2012) How navigational guidance systems are combined in a desert ant. Curr Biol 22(10):927–932. https://doi.org/10.1016/j.cub.2012.03.049

    CAS  Article  PubMed  Google Scholar 

  9. Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3(7):542–552. https://doi.org/10.1038/nrn872

    CAS  Article  PubMed  Google Scholar 

  10. Corey TB, Hebets EA (2017) Microhabitat use in the amblypygid Paraphrynus laevifrons. J Arachnol 45(2):223–230. https://doi.org/10.1636/JoA-S-16-055.1

    Article  Google Scholar 

  11. Dacke M, Baird E, el Jundi B, Warrant EJ, Byrne M (2021) How dung beetles steer straight. Annu Rev Entomol 66:243–256. https://doi.org/10.1146/annurev-ento-042020-102149

    CAS  Article  PubMed  Google Scholar 

  12. Dacke, M, Nilsson, DE, Warrant, E (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401: 470–473. https://doi-org.ezproxy.bgsu.edu/https://doi.org/10.1038/46773

  13. Devaud JM, Papouin T, Carcaud J, Sandoz JC, Grünewald B, Giurfa M (2015) Neural substrate for higher-order learning in an insect: mushroom bodies are necessary for configural discriminations. PNAS 112(43):E5854–E5862. https://doi.org/10.1073/pnas.1508422112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Durier V, Graham P, Collett TS (2003) Snapshot memories and landmark guidance in wood ants. Curr Biol 13(18):1614–1618. https://doi.org/10.1016/j.cub.2003.08.024

    CAS  Article  PubMed  Google Scholar 

  15. Flanigan KAS, Wiegmann DD, Hebets EA, Bingman VP (2021) Multisensory integration supports configural learning of a home refuge in the whip spider Phrynus marginemaculatus. J Exp Biol 224(Pt 3): jeb238444. https://doi.org/10.1242/jeb.238444

  16. Foelix RF, Hebets EA (2001) Sensory biology of whip spiders (Arachnida, Amblypygi). Andrias 15:129–140

    Google Scholar 

  17. Foelix RF, Chu-Wang IW, Beck L (1975) Fine structure of tarsal sensory organs in the whip spider Admetus pumilio (Amblypygi, Arachnida). Tissue Cell 7(2):331–346. https://doi.org/10.1016/0040-8166(75)90009-9

    CAS  Article  PubMed  Google Scholar 

  18. Foelix R, Troyer D, Igelmund P (2002) Peripheral synapses and giant neurons in whip spiders. Microsc Res 58(4):272–282. https://doi.org/10.1002/jemt.10136

    Article  Google Scholar 

  19. Fukushi T, Wehner R (2004) Navigation in wood ants Formica japonica: context dependent use of landmarks. J Exp Biol 207:3431–3439. https://doi.org/10.1242/jeb.01159

    Article  PubMed  Google Scholar 

  20. Gaffin DD, Curry CM (2020) Arachnid navigation – a review of classic and emerging models. J Arachnol 48(1):1–25. https://doi.org/10.1636/0161-8202-48.1.1

    Article  Google Scholar 

  21. Gainett G, Ballesteros JA, Kanzler CR, Zehms JT, Zern JM, Aharon S, Gavish-Regev E, Sharma PP (2020) Systemic paralogy and function of retinal determination network homologs in arachnids. BMC Genom 21:811. https://doi.org/10.1186/s12864-020-07149-x

    CAS  Article  Google Scholar 

  22. Gebhardt I (1983) Vergleichend - morphologische und histologische Untersuchungen an Augen von Spinnentieren unter besonderer Berucksichtigung der Pseudoscorpiones. Thesis, University of Freiburg, Freiburg im Breisgau, Uropygi und Amblypygi

    Google Scholar 

  23. Görner P (1962) Die Orientierung der Trichterspinne nach polarisiertem Licht. Z verglPhysiol 45:307–314

    Google Scholar 

  24. Görner P, Claas B (1985) Homing behavior and orientation in the funnel-web spider, Agelena labyrinthica Clerck. In: FG Barth (ed) Neurobiology of Arachnids Springer, Berlin, Heildelberg, pp 275–297. https://doi.org/10.1007/978-3-642-70348-5_14

  25. Graham P, Cheng K (2009) Which portion of the natural panorama is used for view-based navigation in the Australian desert ant? J Comp Phys A 195(7):681–689. https://doi.org/10.1007/s00359-009-0443-6

    Article  Google Scholar 

  26. Graving JM, Bingman VP, Hebets EA, Wiegmann DD (2017) Development of site fidelity in the nocturnal amblypygid Phrynus Marginemaculatus. J Comp Phys A 203(5):313–328. https://doi.org/10.1007/s00359-017-1169-5

    Article  Google Scholar 

  27. Hebets EA, Chapman RF (2000) Electrophysiological studies of olfaction in the whip spider Phrynusparvulus (Arachnida, Amblypygi). J Insect Phys 46(11):1441–1448. https://doi.org/10.1016/S0022-1910(00)00068-8

    CAS  Article  Google Scholar 

  28. Hebets EA, Aceves-Aparicio A, Aguilar-Argüello S, Bingman VP, Escalante I, Gering EJ, Nelsen DR, Rivera J, Sánchez-Ruiz JÁ, Segura-Hernández L, Settepani V, Wiegmann DD, Stafstrom JA (2014a) Multimodal sensory reliance in the nocturnal homing of the amblypygid Phrynus pseudoparvulus (Class Arachnida, Order Amblypygi). Behav Process 108:123–130. https://doi.org/10.1016/j.beproc.2014.09.014

    Article  Google Scholar 

  29. Hebets EA, Gering EJ, Bingman VP, Wiegmann DD (2014b) Nocturnal homing in the tropical amblypygid Phrynus pseudoparvulus (Class Arachnida, Order Amblypygi). Anim Cogn 17(4):1013–1018. https://doi.org/10.1007/s10071-013-0718-8

    Article  PubMed  Google Scholar 

  30. Hoefler CD, Jakob EM (2006) Jumping spiders in space: movement patterns, nest site fidelity and the use of beacons. Anim Behav 71:109–116. https://doi.org/10.1016/j.anbehav.2005.03.033

    Article  Google Scholar 

  31. Igelmund P (1987) Morphology, sense organs, and regeneration of the forelegs (whips) of the whip spider Heterophrynus elaphus (Arachnida, Amblypygi). J Morphol 193:75–89

    Article  Google Scholar 

  32. Land MF (1985) The morphology and optics of spider eyes. In: FG Barth (ed) Neurobiology of Arachnids Springer, Heidelberg, pp 53–78

  33. Lehmann T, Melzer RR (2018) Also looking like Limulus? - retinula axons and visual neuropils of Amblypygi (whip spiders). Front Zool 15:1–13. https://doi.org/10.1186/s12983-018-0293-6

    Article  Google Scholar 

  34. Mandal S (2018) How do animals find their way back home? A brief overview of homing behavior with special reference to social Hymenoptera. Insect Soc 65:521–536. https://doi.org/10.1007/s00040-018-0647-2

    Article  Google Scholar 

  35. Menzel R, Leboulle G, Eisenhardt D (2006) Small brains, bright minds. Cell 124(2):237–239. https://doi.org/10.1016/j.cell.2006.01.011

    CAS  Article  PubMed  Google Scholar 

  36. Moller P, Görner P (1994) Homing by path integration in the spider Agelena labyrinthica Clerck. J Comp Phys 174(2):221–229. https://doi.org/10.1007/BF00193788

    Article  Google Scholar 

  37. Murakami H, Tomaru T, Gunji YP (2017) Interaction between path integration and visual orientation during the homing run of fiddler crabs. R Soc Open Sci 4(9):170954–170954. https://doi.org/10.1098/rsos.170954

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nørgaard T, Henschel JR, Wehner R (2006) The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola. J Comp Physiol A 192:365–372. https://doi.org/10.1007/s00359-005-0072-7

    Article  Google Scholar 

  39. Nørgaard T, Nilsson DE, Henschel JR, Garm A, Wehner R (2008) Vision in the nocturnal wandering spider Leucorchestris arenicola (Araneae: Sparassidae) J Exp Biol 211: 816–823. https://doi.org/10.1242/jeb.010546

  40. Ortega-Escobar J (2011) Anterior lateral eyes of Lycosa tarentula (Araneae: Lycosidae) are used during orientation to detect changes in the visual structure of the substratum. J Exp Biol 214:2375–2380

    Article  Google Scholar 

  41. Ortega-Escobar J (2020) Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn 23:1189–1204. https://doi.org/10.1007/s10071-020-01424-w

    Article  PubMed  Google Scholar 

  42. Ortega-Escobar J, Muñoz-Cuevas A (1999) Anterior median eyes of Lycosa tarentula (Araneae, Lycosidae) detect polarized light: behavioral experiments and electroretinographic analysis. J Arachnol 27(3):663–671

    Google Scholar 

  43. Paulus HF (1979) Eye structure and the monophyly of the arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold Company, New York, pp 299–383

    Google Scholar 

  44. Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214(3):363–370. https://doi.org/10.1242/jeb.049338

    Article  PubMed  Google Scholar 

  45. Rodríguez RLS, Gamboa ES (2000) Memory of captured prey in three web spiders (Araneae: Araneidae, Linyphiidae, Tetragnathidae). Anim Cogn 3:91–97

    Article  Google Scholar 

  46. Santer RD, Hebets EA (2009) Tactile learning by a whip spider, Phrynus marginemaculatus C.L. Koch (Arachnida, Amblypygi). J Comp Phys A 195(4): 393–399. https://doi.org/10.1007/s00359-009-0417-8

  47. Santer RD, Hebets EA (2011) The sensory and behavioural biology of whip spiders (Arachnida, Amblypygi). Adv in Insect Phys 41:1–64. https://doi.org/10.1016/B978-0-12-415919-8.00001-X

    Article  Google Scholar 

  48. Schmid A (1998) Different functions of different eye types in the spider Cupiennius salei. J Exp Biol 201:221–225

    CAS  Article  Google Scholar 

  49. Sinakevitch I, Long SM, Gronenberg W (2021) The central nervous system of whip spiders (Amblypygi): large mushroom bodies receive olfactory and visual input. J Comp Neurol 529(7):1–17. https://doi.org/10.1002/cne.25045

    Article  Google Scholar 

  50. Spence AJ, Hebets EA (2007) Anatomy and physiology of giant neurons in the antenniform leg of the amblypygid Phrynus marginemaculatus. J Arachnol 34(3):566–577. https://doi.org/10.1636/S05-53.1

    Article  Google Scholar 

  51. Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev Entomol 55:267–284. https://doi.org/10.1146/annurev.ento.010908.164537

    CAS  Article  PubMed  Google Scholar 

  52. Strausfeld NJ (2012) Arthropod Brains: Evolution. Harvard University Press, Cambridge, MA, Functional Elegance and Historical Significance

    Book  Google Scholar 

  53. Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5(1–2):11–37

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM (2009) Ground plan of the insect mushroom body: functional and evolutionary implications. J Comp Neurol 513:265–291. https://doi.org/10.1002/cne.21948

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189(8):579–588. https://doi.org/10.1007/s00359-003-0431-1

    CAS  Article  Google Scholar 

  56. Weygoldt P (2000) Whip Spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo Books, Stenstrup

    Book  Google Scholar 

  57. Wiegmann DD, Hebets EA, Gronenberg W, Graving JM, Bingman VP (2016) Amblypygids: model organisms for the study of arthropod navigation mechanisms in complex environments? Front Behav Neurosci 10:47. https://doi.org/10.3389/fnbeh.2016.00047

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wiegmann DD, Moore CH, Flesher NR, Harper ED, Keto KR, Hebets EA, Bingman VP (2019) Nocturnal navigation by whip spiders: antenniform legs mediate near-distance olfactory localization of a shelter. Anim Behav 149:45–54. https://doi.org/10.1016/j.anbehav.2019.01.005

    Article  Google Scholar 

Download references

Funding

We are grateful for financial support from the National Geographic Society and the National Science Foundation (IOS 1457304).

Author information

Affiliations

Authors

Contributions

Conceptualization and Methodology: DDW, EAH, VPB; Investigation: NRF; Data Curation: NRF, VJC, VPB; Writing: KASF, PC, VJC, VPB; Funding Acquisition: DDW, VPB.

Corresponding author

Correspondence to Kaylyn A. S. Flanigan.

Ethics declarations

Conflicts of interest

The authors declare no competing or financial interests.

Animal care

All experimental procedures followed the Animal Care and Use guidelines set forth by the National Institute of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flanigan, K.A.S., Wiegmann, D.D., Casto, P. et al. Visual control of refuge recognition in the whip spider Phrynus marginemaculatus. J Comp Physiol A 207, 729–737 (2021). https://doi.org/10.1007/s00359-021-01509-y

Download citation

Keywords

  • Amblypygi
  • Navigation
  • Occlusion
  • Spatial learning
  • Vision