Skip to main content
Log in

Salinity-dependent expression of calcium-sensing receptors in Atlantic salmon (Salmo salar) tissues

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Multiple reports suggest that calcium-sensing receptors (CaSRs) are involved in calcium homeostasis, osmoregulation, and/or salinity sensing in fish (Loretz 2008, Herberger and Loretz 2013). We have isolated three unique full-length CaSR cDNAs from Atlantic salmon (Salmo salar) kidney that share many features with other reported CaSRs. Using anti-CaSR antibodies and PCR primers specific for individual salmon CaSR transcripts we show expression in osmoregulatory, neuroendocrine and sensory tissues. Furthermore, CaSRs are expressed in different patterns in salmon tissues where mRNA and protein expression are modified by freshwater or seawater acclimation. For example, in seawater, CaSR mRNA and protein expression is increased significantly in kidney as compared to freshwater. Electrophysiological recordings of olfactory responses produced upon exposure of salmon olfactory epithelium to CaSR agonists suggest a role for CaSRs in chemoreception in this species consistent with other freshwater, anadromous, and marine species where similar olfactory responses to divalent and polyvalent cations have been reported. These data provide further support for a role of CaSR proteins in osmoregulatory and sensory functions in Atlantic salmon, an anadromous species that experiences a broad range of environmental salinities in its life history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ASW:

Artificial seawater

cAMP:

Cyclic adenosine monophosphate

CaSR:

Calcium-sensing receptor

cDNA:

Complimentary deoxyribonucleic acid

ECD:

Extracellular domain

FW:

Freshwater

GPCR:

G-protein coupled receptor

HupCaR:

Human parathyroid calcium-sensing receptor

ICD:

Intracellular domain

IP3 :

Inositol triphosphate

mRNA:

Messenger ribonucleic acid

RT-PCR:

Reverse transcriptase polymerase chain reaction

SalmoKCaR:

Salmon kidney calcium-sensing receptor

SKCaR:

Shark kidney calcium-sensing receptor

SW:

Seawater

UTR:

Untranslated region

ORF:

Open reading frame

CS:

Corpuscle of Stannius

References

  • Alfadda T, Saleh A, Houillier P, Geibel J (2014) Calcium-sensing receptor 20 years later. Am J Physiol 307:C221–C231

    CAS  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetrapoloidy and the evolution of salmonid fishes. In: Turner BJ (ed) The Evolutionary genetics of fishes. Plenum Press, New York, pp 1–53

    Google Scholar 

  • Bai M, Quinn S, Trivedi S, Kifor O, Pearce SH, Pollak MR, Krapcho K, Hebert SC, Brown EM (1996) Expression and characterization of inactivating and activating mutations in the human Ca2+-sensing receptor. J Biol Chem 271:19537–19545

    CAS  PubMed  Google Scholar 

  • Baum MA, Harris HW (1998) Recent insights into the coordinate regulation of body water and divalent mineral ion metabolism. Am J Med Sci 316:321–328

    CAS  PubMed  Google Scholar 

  • Bodznick D (1978) Calcium ion: an odorant for natural water discriminations and the migratory behavior of sockeye salmon. J Comp Physiol 127:157–166

    CAS  Google Scholar 

  • Breitwieser GE, Medlich SU, Zhang M (2004) Calcium sensing receptors as integrators of multiple metabolic signals. Cell Calcium 35:209–216

    CAS  PubMed  Google Scholar 

  • Brown EM (2010) Clinical utility of calcimimetics targeting the extracellular calcium-sensing receptor (CaSR). Biochem Pharmacol 80:297–307

    CAS  PubMed  Google Scholar 

  • Brown EM, MacLeod RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81:239–297

    CAS  PubMed  Google Scholar 

  • Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–580

    CAS  PubMed  Google Scholar 

  • Calo J, Blanco AM, Comesana S, Conde-Sieira M, Morais S, Sengas JL (2021) First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Nat Sci Rep 11:4933. https://doi.org/10.1038/s41598-021-84303-9

    Article  CAS  Google Scholar 

  • Canaff L, Petit JL, Kisiel M, Watson PH, Gascon-Barre M, Hendy GN (2001) Extracellular calcium-sensing receptor is expressed in rat hepatocytes coupling to intracellular calcium mobilization and stimulation of bile flow. J Biol Chem 276:4070–4079

    CAS  PubMed  Google Scholar 

  • Caprio J (1995) In vivo olfactory and taste recordings in fish. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction: current techniques and protocols. CRC Press, New York, pp 251–261

    Google Scholar 

  • Chang W, Shoback D (2004) Extracellular Ca2+-sensing receptors—an overview. Cell Calcium 35(3):183–196. https://doi.org/10.1016/j.ceca.2003.10.012

  • Chang W, Tu C, Cheng Z, Rodriguez L, Chen TH, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D (2007) Complex formation with the type B g-aminobutyric acid receptor affects the expression and signal transduction of the extracellular calcium-sensing receptor. J Biol Chem 282:25030–25040

    CAS  PubMed  Google Scholar 

  • Chattopadhyay N, Cheng I, Rogers K, Riccardi D, Hall A, Diaz R, Hebert SC, Soybel DI, Brown EM (1998) Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. Am J Physiol 274:G122–G130

    CAS  PubMed  Google Scholar 

  • Cheng SX, Okuda M, Hall AE, Geibel JP, Hebert SC (2002) Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am J Physiol (gastrointest Liver Physiol) 283:G240–G250

    CAS  Google Scholar 

  • Conigrave AD, Ward DT (2013) Calcium-sensing receptor (CaSR): pharmacological properties and signaling pathways. Best Pract Res Clin Endocrinol Metab 27:315–331

    CAS  PubMed  Google Scholar 

  • Conigrave AD, Mun H, Delbridge L, Quinn SJ, Wilkinson M, Brown EM (2004) l-amino acids regulate parathyroid hormone secretion. J Biol Chem 279:38151–38159

    CAS  PubMed  Google Scholar 

  • Cunjak RA, Saunders RL, Chadwick EMP (1990) Seasonal variations in the smolt characteristics of juvenile Atlantic salmon (Salmo salar) from estuarine and riverine environments. Can J Fish Aquat Sci 47:813–820

    Google Scholar 

  • Dew WA, Pyle GG (2014) Smelling salt: calcium as an odourant for fathead minnows. Comp Biochem Phys Part A 169:1–6

    CAS  Google Scholar 

  • Dominguez FJ, Pontigo JP, Oyarzun R, Vargas-Lagos C, Morera FJ, Vargas-Chacoff L (2019) The expression pattern of calcium signaling-related genes during smoltification of Salmo salar in productive conditions. Comp Biochem Phys B 231:20–25

    CAS  Google Scholar 

  • Doroszewicz J, Waldegger P, Jeck N, Seyberth H, Waldegger S (2005) pH dependence of extracellular calcium sensing receptor activity determined by a novel technique. Kidney Int 67:187–192

    CAS  PubMed  Google Scholar 

  • Dukes JP, Deaville R, Gotelli D, Neigel JE, Bruford MW, Jordan WC (2006) Isolation and characterization of main olfactory and vomeronasal receptor gene families from the Atlantic salmon (Salmo salar). Gene 371:257–267

    CAS  PubMed  Google Scholar 

  • Dzeja C, Hagen V, Kaupp UB, Frings S (1999) Ca2+ permeation in cyclic nucleotide-gated channels. EMBO J 18:131–144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fellner SK, Parker L (2002) A Ca(2+)-sensing receptor modulates shark rectal gland function. J Exp Biol 205:1889–1897

    CAS  PubMed  Google Scholar 

  • Fiol DF, Kultz D (2007) Osmotic stress sensing and signaling in fishes. FEBS J 274(22):5790–5798

    CAS  PubMed  Google Scholar 

  • Flanagan JA, Bendell LA, Guerreiro PM, Clark MS, Power DM, Canario AVM, Brown BL, Ingleton PM (2002) Cloning of the cDNA for the putative calcium-sensing receptor and its tissue distribution in sea bream (Sparus aurata). Gen Comp Endocr 127:117–127

    CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frings S, Lynch JW, Lindemann B (1992) Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage. J Gen Physiol 100:45–67

    CAS  PubMed  Google Scholar 

  • Gama L, Breitwieser GE (1998) A carboxyl-terminal domain controls the cooperativity for extracellular Ca2+ activation of the human calcium sensing receptor. A study with receptor-green fluorescent protein fusions. J Biol Chem 273:29712–29718

    CAS  PubMed  Google Scholar 

  • Geibel J, Sritharan K, Geibel R, Geibel P, Persing JS, Seeger A, Roepke TK, Deichstetter M, Prinz C, Cheng SX, Martin D, Hebert SC (2006) Calcium-sensing receptor abrogates secretagogue-induced increases intestinal net fluid absorption by enhancing cyclic nucleotide destruction. Proc Natl Acad Sci (USA) 103:9390–9397

    CAS  Google Scholar 

  • Graca JAZ, Schepelmann M, Brennan SC, Reens J, Chang W, Yan P, Toka H, Riccardi D, Price SA (2016) Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney. Am J Physiol Renal Physiol 310(6):F518–F533

    CAS  PubMed  Google Scholar 

  • Greenwood MP, Flik G, Wagner GF, Balment RJ (2009) The corpuscles of Stannius, calcium-sensing receptor, and stanniocalcin: responses to calcimimetics and physiological challenges. Endocrinology 150(7):3002–3010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorio SF, Fuentes J (2018) Regulation of bicarbonate secretion in marine fish intestine by the calcium-sensing receptor. Int J Mol Sci 19:1072. https://doi.org/10.3390/ijms19041072

    Article  CAS  PubMed Central  Google Scholar 

  • Grosell M (2006) Intestinal anion exchange in marine fish osmoregulation. J Exp Biol 200:2813–2827

    Google Scholar 

  • Handlogten ME, Shiraishi N, Awata H, Huang C, Miller RT (2000) Extracellular Ca2+-sensing receptor is a promiscuous divalent cation sensor that responds to lead. Am J Physiol Renal Physiol 279:F1083-1091

    CAS  PubMed  Google Scholar 

  • Hebert SC, Cheng S, Geibel J (2004) Functions and roles of the extracellular Ca2+-sensing receptor in the gastrointestinal tract. Cell Calcium 35:239–247

    CAS  PubMed  Google Scholar 

  • Hendy GN, Canaff L (2016) Calcium-sensing receptor gene regulation of expression. Front Physiol. https://doi.org/10.3389/fphys.2016.00394

    Article  PubMed  PubMed Central  Google Scholar 

  • Hentschel H, Nearing J, Harris HW, Betka M, Baum M, Hebert SC, Elger M (2003) Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias. Am J Physiol Renal Physiol 285:F430-439

    PubMed  Google Scholar 

  • Herberger AL, Loretz CA (2013a) Morpholino oligonucleotide knockdown of the extracellular calcium-sensing receptor impairs early skeletal development in zebrafish. Comp Biochem Physiol A 166(3):470–481. https://doi.org/10.1016/j.cbpa.2013.07.027

    Article  CAS  Google Scholar 

  • Herberger AL, Loretz CA (2013b) Vertebrate extracellular calcium-sensing receptor evolution: selection in relation to life history and habitat. Comp Biochem Physiol D Genomics Proteom 8:86–94

    CAS  Google Scholar 

  • Ho C, Conner DA, Pollak MR, Ladd DJ, Kifor O, Warren HB, Brown EM, Seidman JG, Seidman CE (1995) A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat Genet 11:389–394

  • Hofer AM, Brown EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4:530–538

    CAS  PubMed  Google Scholar 

  • Hubbard PC, Canario AVM (2007) Evidence that olfactory sensitivities to calcium and sodium are mediated by different mechanisms in the goldfish Carassius auratus. Neurosci Lett 414:90–93

    CAS  PubMed  Google Scholar 

  • Hubbard PC, Barata EN, Canario AV (2000) Olfactory sensitivity to changes in environmental [Ca(2+)] in the marine teleost Sparus aurata. J Exp Biol 203(24):3821–3829

    CAS  PubMed  Google Scholar 

  • Hubbard PC, Ingleton PM, Bendell LA, Barata EN, Canario AV (2002) Olfactory sensitivity to changes in environmental [Ca(2+)] in the freshwater teleost Carassius auratus: an olfactory role for the Ca(2+)-sensing receptor? J Exp Biol 205:2755–2764

    CAS  PubMed  Google Scholar 

  • Hunter KA, Kim JP, Reid MR (1999) Factors influencing the inorganic speciation of trace metal cations in freshwaters. Mar Freshw Res 50:367–372

    CAS  Google Scholar 

  • Ingleton PM, Hubbard PC, Danks JA, Elgar G, Sandford RA, Balment RJ (1999) The calcium-sensing receptor in fishes. In: Danks J, Dacke C, Flik G, Gay C (eds) Calcium metabolism: comparative endocrinology. BioScientifica Ltd., Bristol, pp 45–48

    Google Scholar 

  • Jain RA, Wolman MA, Marsden KC, Nelson JC, Shoenhard H, Echeverry FA, Szi C, Bell H, Skinner J, Cobbs EN, Sawada K, Zamora A, Pereda AE, Granato M (2018) A forward genetic screen in zebrafish identifies the G-protein coupled receptor CaSR as a modulator of sensorimotor decision-making. Curr Biol 28(9):1357-1369.e5. https://doi.org/10.1016/j.cub.2018.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleene SJ (1995) Block by external calcium and magnesium of the cyclic-nucleotide-activated current in olfactory cilia. Neuroscience 66:1001–1008

    CAS  PubMed  Google Scholar 

  • Kleene SJ (1999) Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to cAMP. J Neurophysiol 81:2675–2682

    CAS  PubMed  Google Scholar 

  • Kultz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914

    PubMed  Google Scholar 

  • Kurahashi T, Menini A (1997) Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385:725–729

    CAS  PubMed  Google Scholar 

  • Laberge F, Hara TJ (2001) Neurobiology of fish olfaction: a review. Brain Res Rev 36:46–59

    CAS  PubMed  Google Scholar 

  • Lopreato GF, Lu Y, Southwell A, Atkinson NS, Hillis DM, Wilcox TP, Zakon HH (2001) Evolution and divergence of sodium channel genes in vertebrates. Proc Natl Acad Sci USA 98:7588–7592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loretz CA (2008) Extracellular calcium-sensing receptors in fishes. Comp Biochem Physiol A: Mol Integr Physiol 149:225–245

    Google Scholar 

  • Loretz CA (2009) Extracellular calcium-sensing receptor distribution in osmoregulatory and endocrine tissues of the tilapia. Gen Comp Endocrinol 161:216–228

    CAS  PubMed  Google Scholar 

  • Loretz CA, Pollina C, Hyodo S, Takei Y, Chang W, Shoback D (2004) cDNA cloning and functional expression of a Ca2+-sensing receptor with truncated C-terminal tail from the Mozambique Tilapia (Oreochromis mossambicus). J Biol Chem 279:53288–53297

    CAS  PubMed  Google Scholar 

  • Loretz CA, Pollina C, Herberger A, Hyodo S, Takei Y (2012) Skeletal tissues in Mozambique tilapia (Oreochromis mossambicus) express the extracellular calcium-sensing receptor. Comp Biochem Physiol A: Mol Integr Physiol 163:311–318

    CAS  Google Scholar 

  • Magno AL, Ward BK, Ratajczak T (2011) The calcium-sensing receptor: a molecular perspective. Endocr Rev 32:3–30

    CAS  PubMed  Google Scholar 

  • Malaga-Trillo E, Meyer A (2001) Genome duplications and accelerated evolution of Hox gene and cluster architecture in teleost fish. Am Zool 41:676–686

    CAS  Google Scholar 

  • Matthews HR, Reisert J (2003) Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr Opin Neurobiol 13:469–475

    CAS  PubMed  Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    CAS  Google Scholar 

  • McCormick SD, Sheehan T, Bjornsson BT, Lipsky C, Kocik JF, Regish AM, O’Dea MF (2013) Physiological and endocrine changes in Atlantic salmon smolts during hatchery rearing, downstream migration, ocean entry. Can J Fish Aquat Sci 70:105–118

    CAS  Google Scholar 

  • Mills D (2000) The ocean life of Atlantic salmon: environmental and biological factors influencing survival. Fishing News Books, Malden

    Google Scholar 

  • Naito T, Saito Y, Yamamoto J, Nozaki Y, Tomura K, Hazama M, Nakanishi S, Brenner S (1998) Putative pheromone receptors related to the Ca2+-sensing receptor in Fugu. Proc Natl Acad Sci 95:5178–5181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Axuma T, Amano M, Abe H, Yamamoto N, Yoshimura T (2018) The saccus vasculosus of fish is a senor of seasonal changes in day length. Nat Commun. https://doi.org/10.1038/ncomms3108

    Article  Google Scholar 

  • Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown EM, Hebert SC, Harris HW (2002) Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proc Natl Acad Sci USA 99:9231–9236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388:167–171

    CAS  PubMed  Google Scholar 

  • Oda Y, Tu CL, Chang W, Crumrine D, Komuves L, Mauro T, Elias PM, Bikle DD (2000) The calcium sensing receptor and its alternatively spliced form in murine epidermal differentiation. J Biol Chem 275:1183–1190

    CAS  PubMed  Google Scholar 

  • Pace AJ, Gama L, Breitwieser GE (1999) Dimerization of the calcium-sensing receptor occurs within the extracellular domain and is eliminated by Cys –> Ser mutations at Cys101 and Cys236. J Biol Che 274:11629–11634

    CAS  Google Scholar 

  • Perry SF, Rivero-Lopez L, McNeill B, Wilson J (2006) Fooling a freshwater fish: how dietary salt transforms the rainbow trout gill into a seawater gill phenotype. J Exp Biol 209:4591–4596

    CAS  PubMed  Google Scholar 

  • Pollak MR, Brown EM, Chou YH, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG (1993) Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75:1297–1303

    CAS  PubMed  Google Scholar 

  • Quinn SJ, Kifor O, Trivedi S, Diaz R, Vassilev P, Brown EM (1998) Sodium and ionic strength sensing by the calcium receptor. J Biol Chem 273:19579–19586

    CAS  PubMed  Google Scholar 

  • Quinn SJ, Bai M, Brown EM (2004) pH sensing by the calcium-sensing receptor. J Biol Chem 279:37241–37249

    CAS  PubMed  Google Scholar 

  • Radman DP, McCudden C, James K, Nemeth EM, Wagner GF (2002) Evidence for calcium-sensing receptor mediated stanniocalcin secretion in fish. Mol Cell Endocrinol 186:111–119

    CAS  PubMed  Google Scholar 

  • Ray K, Fan GF, Goldsmith PK, Spiegel AM (1997) The carboxyl terminus of the human calcium receptor. Requirements for cell-surface expression and signal transduction. J Biol Chem 272:31355–31361

    CAS  PubMed  Google Scholar 

  • Restrepo D, Teeter JH, Schild D (1996) Second messenger signaling in olfactory transduction. J Neurobiol 30:37–48

    CAS  PubMed  Google Scholar 

  • Riccardi D, Hall AE, Chattopadhyay N, Xu JZ, Brown EM, Hebert SC (1998) Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol 274:F611–F622

    CAS  PubMed  Google Scholar 

  • Robinson-Rechavi M, Marchand O, Escriva H, Laudet V (2001) An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes. Curr Biol 11:R458–R459

    CAS  PubMed  Google Scholar 

  • Rogers KV, Dunn CK, Hebert SC, Brown EM (1997) Localization of calcium receptor mRNA in the adult rat central nervous system by in situ hybridization. Brain Res 744:47–56

    CAS  PubMed  Google Scholar 

  • Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Suzuki N (2001) Whole-cell response characteristics of ciliated and microvillous olfactory receptor neurons to amino acids, pheromone candidates and urine in rainbow trout. Chem Senses 26:1145–1156

    CAS  PubMed  Google Scholar 

  • Schild D, Restrepo D (1998) Transduction mechanisms in vertebrate olfactory receptor cells. Physiol Rev 78:429–466

    CAS  PubMed  Google Scholar 

  • Shoji T, Fujita KI, Furihata E, Kurihara K (1996) Olfactory responses of a euryhaline fish, the rainbow trout: adaptation of olfactory receptors to sea water and salt-dependence of their responses to amino acids. J Exp Biol 199:303–310

    CAS  PubMed  Google Scholar 

  • Shoji T, Ueda H, Ohgami T, Sakamoto T, Katsuragi Y, Yamauchi K, Kurihara K (2000) Amino acids dissolved in stream water as possible home stream odorants for masu salmon. Chem Senses 25:533–540

    CAS  PubMed  Google Scholar 

  • Stefansson SO, Bjornsson BT, Ebbesson LOE, McCormick SD (2008) Smoltification. In: Finn RN, Kapoor BG (eds) Fish larval physiology, chap 20. Science Publishers Inc, Enfield, NH/IBH Publishing Co Pvt Ltd, New Delhi, pp 639–681

  • Sutterlin AM, Sutterlin N (1971) Electrical responses of the olfactory epithelium of Atlantic salmon (Salmo salar). J Fish Res Bd Can 28:565–572

    Google Scholar 

  • Takeo J, Yamashita S (1999) Two distinct isoforms of cDNA encoding rainbow trout androgen receptors. J Biol Chem 274:5674–5680

    CAS  PubMed  Google Scholar 

  • Tohse H, Mugiya Y (2001) Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endolymph and otoliths in salmon Oncorhynchus masou. Comp Biochem Physiol A 128:177–184

    CAS  Google Scholar 

  • Velez Z, Hubbard PC, Barata EN, Canario AVM (2009) Adaptation to reduced salinity affects the olfactory sensitivity of Senegalese sole (Solea sensegalensis Kaup 1858) to Ca2+ and Na+ but not amino acids. J Exp Biol 212:2532–2540

    CAS  PubMed  Google Scholar 

  • Wang W, Lu M, Balazy M, Hebert SC (1997) Phospholipase A2 is involved in mediating the effect of extracellular Ca2+ on apical K+ channels in rat TAL. Am J Physiol 273:F421–F429

    CAS  PubMed  Google Scholar 

  • Ward DT, Brown EM, Harris HW (1998) Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J Biol Chem 273:14476–14483

    CAS  PubMed  Google Scholar 

  • Wilson RW, Wilson JM, Grosell M (2002) Intestinal bicarbonate secretion by marine teleost fish-why and how? Biochim Biophys Acta 1566:182–193

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank: A. Wisinski, K. Pigeon and C. Holm for excellent technical assistance. The authors are also grateful to Dr. T. Linley, D. Russell and T. Davis as well as Dr. E. M. Brown of Brigham and Women’s Hospital for helpful discussions. The paper has also been improved by comments from two anonymous reviewers.

Funding

This study was supported by funds from MariCal Inc. of Portland, ME.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jury.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests nor conflicts of interest to declare that are relevant to the content of this article. HW Harris has served as a paid expert technical witness for US and Norwegian patent litigations in 2019 and 2020, respectively, regarding the validity and enforcement of US and foreign issued patents granted to MariCal Inc. and licensed to STIM AS of Lofoten, Norway that disclose commercial technology based on the roles of CaSRs in anadromous fish. However, Harris has no direct or indirect financial interests in either MariCal or STIM.

Ethics approval

These studies followed the ethical guidelines from the American Fisheries Society Guidelines for Use of Fishes in Research (2004 and updated in 2014) (citation: Use of Fishes in Research Committee (joint committee of the American Fisheries Society, the American Institute of Fishery Research Biologists, and the American Society of Ichthyologists and Herpetologists). 2014. Guidelines for the use of fishes in research. American Fisheries Society, Bethesda, Maryland.)

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6655 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jury, S., Betka, M., Nearing, J. et al. Salinity-dependent expression of calcium-sensing receptors in Atlantic salmon (Salmo salar) tissues. J Comp Physiol A 207, 505–522 (2021). https://doi.org/10.1007/s00359-021-01493-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-021-01493-3

Keywords

Navigation