Skip to main content

Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni

Abstract

Alternative reproductive tactics (ARTs) occur when there is categorical variation in the reproductive strategies of a sex within a population. These different behavioral phenotypes can expose animals to distinct cognitive challenges, which may be addressed through neuroanatomical differentiation. The dramatic phenotypic plasticity underlying ARTs provides a powerful opportunity to study how intraspecific nervous system variation can support distinct cognitive abilities. We hypothesized that conspecific animals pursuing ARTs would exhibit dissimilar brain architecture. Dimorphic males of the bee species Centris pallida and Amegilla dawsoni use alternative mate location strategies that rely primarily on either olfaction (large-morph) or vision (small-morph) to find females. This variation in behavior led us to predict increased volumes of the brain regions supporting their primarily chemosensory or visual mate location strategies. Large-morph males relying mainly on olfaction had relatively larger antennal lobes and relatively smaller optic lobes than small-morph males relying primarily on visual cues. In both species, as relative volumes of the optic lobe increased, the relative volume of the antennal lobe decreased. In addition, A. dawsoni large males had relatively larger mushroom body lips, which process olfactory inputs. Our results suggest that the divergent behavioral strategies in ART systems can be associated with neuroanatomical differentiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

Data archived in Dryad: https://doi.org/10.5061/dryad.bcc2fqzcd.

Code availability

Not applicable.

References

  1. Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthro 36:199–221

    Google Scholar 

  2. Alcock J (1976) The social organization of male populations of Centris pallida (Hymenoptera, Anthophoridae). Psyche 83:121–131

    Google Scholar 

  3. Alcock J (1979) The evolution of intraspecific diversity in male reproductive strategies in some bees and wasps. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp 381–402

    Google Scholar 

  4. Alcock J (1984) Long-term maintenance of size variation in populations of Centris pallida (Hymenoptera: Anthophoridae). Evol 38:220–223

    Google Scholar 

  5. Alcock J (1997) Competition from large males and the alternative mating tactics of small males of Dawson’s burrowing bee (Amegilla dawsoni) (Apidae, Apinae, Anthophorini). J Insect Behav 10:99–113

    Google Scholar 

  6. Alcock J (2013) Role of body size in the competition for mates by males of Centris pallida (Anthophorinae: Hymenoptera). Southwest Nat 58:427–430

    Google Scholar 

  7. Alcock J, Buchmann S (1985) The significance of the post-insemination display by male Centris pallida (Hymenoptera: Anthophoridae). Z Tierpsychol 68:231–243

    Google Scholar 

  8. Alcock J, Jones E, Buchmann S (1976) Location before emergence of the female bee, Centris pallida, by its male (Hymenoptera: Anthrophoridae). J Zool 179:189–199

    Google Scholar 

  9. Alcock J, Jones E, Buchmann S (1977) Male mating strategies in the bee Centris pallida Fox (Anthophoridae: Hymenoptera). Am Nat 111:145–155

    Google Scholar 

  10. Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond B Biol Sci 265:1933–1937

    CAS  Google Scholar 

  11. Barton RA, Harvey PH (2000) Mosaic evolution of brain structure in mammals. Nature 405:1055–1058

    CAS  PubMed  Google Scholar 

  12. Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory systems in primates, bats and insectivores. Philos Trans R Soc L B Biol Sci 348:381–392

    CAS  Google Scholar 

  13. Bernstein S, Bernstein RA (1969) Relationship between foraging efficiency and the size of the head and component brain and sensory structures in the red wood ant. Brain Res 16:85–104

    CAS  PubMed  Google Scholar 

  14. Brandstaetter AS, Bastin F, Sandoz JC (2014) Honeybee drones are attracted by groups of consexuals in a walking simulator. J Exp Biol 217:1278–1285

    PubMed  Google Scholar 

  15. Bulova S, Purce K, Khodak P, Sulger E, O’Donnell S (2016) Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci Nat 103:31

    CAS  Google Scholar 

  16. Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    CAS  PubMed  Google Scholar 

  17. Danforth B, Desjardins CA (1999) Male dimorphism in Perdita portalis (Hymenoptera, Andrenidae) has arisen from preexisting allometric patterns. Insectes Soc 46:18–28

    Google Scholar 

  18. Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Ann Rev Entomol 51:209–232

    CAS  Google Scholar 

  19. Godfrey RK, Gronenberg W (2019) Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A 205:13–32

    Google Scholar 

  20. Gordon DG, Traniello JF (2018) Synaptic organization and division of labor in the exceptionally polymorphic ant Pheidole rhea. Neurosci Lett 676:46–50

    CAS  PubMed  Google Scholar 

  21. GraphPad Software (2018) GraphPad Prism v 8.3.0 for Windows. La Jolla

  22. Gronenberg W, Hölldobler B (1999) Morphologic representation of visual and antennal information in the ant brain. J Comp Neurol 412:229–240

    CAS  PubMed  Google Scholar 

  23. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    CAS  PubMed  Google Scholar 

  24. Healy S, Guilford T (1990) Olfactory-bulb size and nocturnality in birds. Evolution 44:339–346

    PubMed  Google Scholar 

  25. Houston TF (1991) Ecology and behaviour of the bee Amegilla (Asaropoda) dawsoni (Rayment) with notes on a related species (Hymenoptera: Anthophoridae). Rec West Aust Mus 15:591–609

    Google Scholar 

  26. Keesey IW, Grabe V, Gruber L, Koerte S, Obiero GF, Bolton G, Khallaf MA, Kunert G, Lavista-Llanos S, Valenzano DR, Rybak J, Barrett BA, Knaden M, Hansson BS (2019) Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat Commun 10:1162

    PubMed  PubMed Central  Google Scholar 

  27. Kenyon FC (1896) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. J Comp Neurol 6:133–210

    Google Scholar 

  28. Kotrschal K, van Staaden MJ, Huber R (1998) Fish brains: evolution and environmental relationships. Rev Fish Biol Fish 8:373–408

    Google Scholar 

  29. Kukuk PF (1996) Male dimorphism in Lasioglossum (Chilalictus) hemichalceum: the role of larval nutrition. J Kans Entomol Soc 69:147–157

    Google Scholar 

  30. Liao WB, Lou SL, Zeng Y, Kotrschal A (2016) Large brains, small guts: the expensive tissue hypothesis supported with anurans. Am Nat 188:693–700

    PubMed  Google Scholar 

  31. Luo Y, Zhong MJ, Huang Y, Li F, Liao WB, Kotrschal A (2017) Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain framework. Sci Rep 7:16629

    PubMed  PubMed Central  Google Scholar 

  32. Montgomery SH, Ott SR (2015) Brain composition in Godyris zavaleta, a diurnal butterfly, reflects an increased reliance on olfactory information. J Comp Neurol 523:869–891

    PubMed  Google Scholar 

  33. Niven JE (2016) Neuronal energy consumption: biophysics efficiency and evolution. Curr Opin Neurobiol 41:129–135

    CAS  PubMed  Google Scholar 

  34. Niven JE, Laughlin SB (2008) Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol 211:1792–1804

    CAS  PubMed  Google Scholar 

  35. O’Donnell S, Clifford MR, DeLeon S, Papa C, Zahedi N, Bulova SJ (2013) Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (Hymenoptera: Vesidae, Polistinae). Brain Behav Evol 82:177–184

    PubMed  Google Scholar 

  36. O’Donnell S, Bulova SJ, Barrett M, Fiocca K (2017) Size constraints and sensory adaptations affect mosaic brain evolution in paper wasps (Vespidae: Epiponini). Biol J Linn Soc 123:302–310

    Google Scholar 

  37. O’Donnell S, Bulova S, Barrett M, von Beeren C (2018) Brain investment under colony-level selection: soldier-specialization in Eciton army ants (Formicidae: Dorylinae). BMC Zool 3:3

    Google Scholar 

  38. Oliveira RF, Taborsky M, Brockmann HJ (2008) Alternative reproductive tactics: an integrative approach. Cambridge University Press, Cambridge

    Google Scholar 

  39. Özer I, Carle T (2020) Back to the light, coevolution between vision and olfaction in the “dark-flies” (Drosophila melanogaster). PLoS ONE 15:e0228939

    PubMed  PubMed Central  Google Scholar 

  40. Paulk AC, Gronenberg W (2008) Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. Arthropod Struct Dev 37:443–458

    PubMed  PubMed Central  Google Scholar 

  41. Paxton RJ (2005) Male mating behaviour and mating systems of bees: an overview. Apidologie 36:145–156

    Google Scholar 

  42. Rehan SM, Bulova SJ, O’Donnell S (2015) Cumulative effects of foraging behavior and social dominance on brain development in a facultatively social bee (Ceratina australensis). Brain Behav Evol 85:117–124

    PubMed  Google Scholar 

  43. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheehan ZBV, Kamhi JF, Seid MA, Narendra A (2019) Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J Comp Neurol 527:1261–1277

    PubMed  Google Scholar 

  45. Sherry DF (2006) Neuroecology. Ann Rev Psychol 57:167–197

    Google Scholar 

  46. Shuster SM (2010) Alternative mating strategies. In: Fox C, Westneat DF (eds) Evolutionary behavioral ecology. Cambridge University Press, Cambridge

    Google Scholar 

  47. Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

    Google Scholar 

  48. Simmons LW, Alcock J, Reeder A (2003) The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson’s burrowing bee, Amegilla dawsoni. Anim Behav 66:677–685

    Google Scholar 

  49. Slater GP, Yocum GD, Bowsher JH (2020) Diet quantity influences caste determination in honeybees (Apis mellifera). Proc R Soc Lond B Biol Sci 287:20200614

    CAS  Google Scholar 

  50. Snelling RR (1984) Studies on the taxonomy and distribution of American Centridine bees (Hymenoptera: Anthophoridae). Contrib Sci 347:1–69

    Google Scholar 

  51. Soares D, Niemiller ML (2013) Sensory adaptations of fishes to subterranean environments. Bioscience 63:274–283

    Google Scholar 

  52. Stieb SM, Kelber C, Wehner R, Rossler W (2011) Antennal-lobe organization in desert ants of the genus Cataglyphis. Brain Behav Evol 77:136–146

    PubMed  Google Scholar 

  53. Stöckl A, Heinze S, Charalabidis A, el Jundi B, Warrant E, Kelber A (2016) Differential investment in visual and olfactory brain areas reflects behavioral choices in hawk moths. Sci Rep 6:26041

    PubMed  PubMed Central  Google Scholar 

  54. Tierney SM, Friedrich M, Humphreys WF, Jones TM, Warrant EJ, Wcislo WT (2017) Consequences of evolutionary transitions in changing photic environments. Aust Entomol 56:23–46

    Google Scholar 

  55. van der Woude E, Groothius J, Smid HM (2019) No gains for bigger brains: functional and neuroanatomical consequences of relative brain size in a parasitic wasp. J Evol Biol 32:694–705

    PubMed  PubMed Central  Google Scholar 

  56. Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev Camb Philos Soc 79:671–712

    PubMed  Google Scholar 

  57. Wenner AM (1974) Information transfer in honeybees: a population approach. In: Kramer L, Pliver P, Alloway R (eds) Advances in the study of communication and affect. Plenum Press, New York, pp 133–169

    Google Scholar 

  58. Wilczynski W (1984) Central nervous systems subserving a homoplasous periphery. Am Zool 24:755–763

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dan Papaj, Antionette “Toni” Roe, Kay Richter, and Kit Prendergast for field assistance; Karmi Oxman, Stefan Bonestroo, Virginia Caponera, Christian Cabuslay, Rhe Congdon, Devneet Kainth, and Cheyenne McNair for laboratory assistance; Nikolai Tatarnic and the Western Australian Museum (Perth, Australia) for export permits from Australia to the USA; and John Alcock, Bruce Taubert, and Leigh Simmons for nesting site information. RA support for MRB from Drexel College of Arts and Sciences. Buchmann acknowledges support for A. dawsoni specimen collection and preparation from National Science Foundation Grant number 1929499, collection and export permits obtained through the Australian Government Department of the Environment in collaboration with the Western Australia Museum (AU027; Buchmann: US174). Species are not endangered nor protected.

Funding

RA support to MRB from the Drexel College of Arts and Sciences. SB received support from National Science Foundation Grant number 1929499 to collect and prepare A. dawsoni specimen.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Meghan Barrett.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrett, M., Schneider, S., Sachdeva, P. et al. Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J Comp Physiol A 207, 497–504 (2021). https://doi.org/10.1007/s00359-021-01492-4

Download citation

Keywords

  • Alternative mating tactics
  • Sensory differentiation
  • Solitary bees