Agnarsson I (2003) Spider webs as habitat patches—The distribution of kleptoparasites (Argyrodes, theridiidae) among host webs (Nephila, tetragnathidae). J Arachnol 31(3):344–349
Article
Google Scholar
Bracis C, Bildstein KL, Mueller T (2018) Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography 41:1801–1811. https://doi.org/10.1111/ecog
Article
Google Scholar
Cangialosi K (1991) Attack strategies of a spider kleptoparasite: effects of prey availability and host colony size. Anim Behav 41:639–647. https://doi.org/10.1016/S0003-3472(05)80902-9
Article
Google Scholar
Collett TS, Zeil J (1996) Flights of learning. Curr Dir Psychol Sci 5:149–155
Article
Google Scholar
Elgar MA (1989) Kleptoparasitism: a cost of aggregating for an orb-weaving spider. Anim Behav 37:1052–1055
Article
Google Scholar
Gaffin DD, Curry CM (2020) Arachnid navigation—a review of classic and emerging models. J Arachnol 48:1–26. https://doi.org/10.1636/0161-8202-48.1.1
Article
Google Scholar
Garber PA, Porter LM (2014) Navigating in small-scale space: the role of landmarks and resource monitoring in understanding saddleback tamarin travel. Am J Primatol 76(5):447–459. https://doi.org/10.1002/ajp.22196
Article
PubMed
Google Scholar
Fu AW, Keogh E, Lau LY, Ratanamahatana CA, Wong RC (2008) Scaling and time warping in time series querying. VLDB J 17(4):899–921
Article
Google Scholar
Hemmi JM, Zeil J (2005) Animals as prey: perceptual limitations and behavioural options: sensory biology: linking the internal and external ecologies of marine organisms. Mar Ecol Prog Ser (Halstenbek) 287:274–278
Google Scholar
Hénaut Y, Delme J, Legal L, Williams T (2005) Host selection by a kleptobiotic spider. Naturwissenschaften 92(2):95–99
Article
Google Scholar
Hu B, Chen Y, Keogh E (2013) Time series classification under more realistic assumptions. In: Proceedings of the 2013 SIAM international conference on data mining 2013. Society for Industrial and Applied Mathematics, pp 578–586
Iyengar EV (2008) Kleptoparasitic interactions throughout the animal kingdom and a re-evaluation, based on participant mobility, of the conditions promoting the evolution of kleptoparasitism. Biol J Linn Soc 93(4):745–762
Article
Google Scholar
Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping. Knowl Inf Syst 7(3):358–386
Article
Google Scholar
Kuntner M, Hamilton CA, Cheng RC, Gregorič M, Lupše N, Lokovšek T, Lemmon EM, Lemmon AR, Agnarsson I, Coddington JA, Bond JE (2019) Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Syst biol 68(4):555–572
Article
Google Scholar
Layne J, Barnes W, Duncan L (2003) Mechanisms of homing in the fiddler crab Uca rapax 1. Spatial and temporal characteristics of a system of small-scale navigation. J Exp Biol 206:4413–4423
Article
Google Scholar
Mather JA (1991) Navigation by spatial memory and use of visual landmarks in octopuses. J Comp Physiol A 168:491–497. https://doi.org/10.1007/BF00199609
Article
Google Scholar
Narendra A (2020) Orientation by central-place foragers. In: Encyclopedia of Social Insects. Springer, Springer Nature,
Rao D, Tapia-McClung H, Narendra A (2019) Reeling in the prey: Fishing behaviour in an orb web spider. J Exp Biol 1:9. https://doi.org/10.1242/jeb.213751
Article
Google Scholar
Reppert SM, de Roode JC (2018) Demystifying monarch butterfly migration. Curr Biol 28:R1009–R1022. https://doi.org/10.1016/j.cub.2018.02.067
CAS
Article
PubMed
Google Scholar
Robinson MH, Mirick H (1971) The predatory behavior of the golden-web spider Nephila clavipes (Araneae: Araneidae). Psyche 78:123–139
Article
Google Scholar
Stürzl W, Grixa I, Mair E, Narendra A, Zeil J (2015) Three-dimensional models of natural environments and the mapping of navigational information. J Comp Physiol A 201(6):563–584
Article
Google Scholar
Stellwag LM, Dodson GN (2010) Navigation by male crab spiders Misumenoides formosipes (Araneae: Thomisidae): Floral cues may aid in locating potential mates. J Ins Behav 23:226–235. https://doi.org/10.1007/s10905-010-9209-9
Article
Google Scholar
Troup G, Doran B, Au J, King LE, Douglas-Hamilton I, Heinsohn R (2020) Movement tortuosity and speed reveal the trade-offs of crop raiding for African elephants. Anim Behav 168:97–108. https://doi.org/10.1016/j.anbehav.2020.08.009
Article
Google Scholar
Ubick D, Paquin P, Cushing PE, Roth VD (2017) Spiders of North America: an identification manual. American Arachnological Society
Vollrath F (1979a) Behaviour of the kleptoparasitic spider Argyrodes elevatus (Araneae, Theridiidae). Anim Behav 27:515–521
Article
Google Scholar
Vollrath F (1979b) Vibrations: their signal function for a spider kleptoparasite. Science 205:1149–1151. https://doi.org/10.1126/science.205.4411.1149
CAS
Article
PubMed
Google Scholar
Vollrath F (1984) Kleptobiotic interactions in invertebrates. In: Barnard C (ed) Producers and scroungers: strategies of exploitation and parasitism. Springer, US, pp 61–94
Whitehouse MEA (1997) The benefits of stealing from a predator: foraging rates, predation risk, and intraspecific aggression in the kleptoparasitic spider Argyrodes antipodiana. Behav Ecol 8:663–667
Article
Google Scholar
Whitehouse M, Agnarsson I, Miyashita T, Smith D, Cangialosi K, Masumoto T, Li D, Henaut Y (2002) Argyrodes: phylogeny, sociality and interspecific interactions—A report on the Argyrodes symposium, Badplaas 2001. J Arachnol 30:238–245
Article
Google Scholar
Wiegmann DD, Hebets EA, Gronenberg W, Graving JM, Bingman VP (2016) Amblypygids: model organisms for the study of arthropod navigation mechanisms in complex environments? Front Behav Neurosci 10:1–8. https://doi.org/10.3389/fnbeh.2016.00047
Article
Google Scholar
Wolfram Research, Inc. (2020) Mathematica, Version 12.2. Champaign, IL
Zeil J, Fleischmann PN (2019) The learning walks of ants (Hymenoptera: Formicidae). Myrmecol News 29:93–110. https://doi.org/10.25849/myrmecol.news_029:093
Article
Google Scholar