Skip to main content

Trapped indoors? Long-distance dispersal in mygalomorph spiders and its effect on species ranges

Abstract

The Mygalomorphae includes tarantulas, trapdoor, funnel-web, purse-web and sheet-web spiders, species known for poor dispersal abilities. Here, we attempted to compile all the information available on their long-distance dispersal mechanisms from observations that are often spread throughout the taxonomic literature. Mygalomorphs can disperse terrestrially, and in some tarantulas, for example, spiderlings walk together in single files away from their maternal burrow, a mechanism limited in distance covered. Conversely, at least eight species disperse aerially, via dropping on drag lines from elevated positions and being passively blown off (‘suspended ballooning’). The first record of this behaviour is 135 years old, but we still know very little about it. Phylogeographic studies suggest several occurrences of transcontinental dispersal in the evolutionary history of mygalomorphs, but these might result from contingent rafting events, rather than regular dispersal mechanisms. We use occurrence data to show that suspended ballooning increases the species ranges in Australian mygalomorph families where this behaviour has been recorded. We also identified Anamidae, Idiopidae, and especially Atracidae, as families that might employ suspended ballooning or another efficient but undiscovered dispersal mechanism. Finally, we suggest that molecular studies with mitochondrial genes will help disentangle behavioural limitations of dispersal from ecological or physical ones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

(Redrawn from Opatova et al. 2020)

Fig. 3

References

  1. Atlas of Living Australia. https://doi.org/10.26197/5d7f2348165a0. Accessed 3 Aug 2020

  2. Baerg WJ (1928) Some studies of a trapdoor spider (Araneae: Aviculariidae). Entomol News 39:1–4

    Google Scholar 

  3. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. http://CRAN.R-project.org/package=lme4

  4. Beavis AS, Sunnucks P, Rowell DM (2011) Microhabitat preferences drive phylogeographic disparities in two Australian funnel web spiders. Biol J Linn Soc 104:805–819

    Article  Google Scholar 

  5. Bell JR, Bohan DA, Shaw EM, Weyman GS (2005) Ballooning dispersal using silk: world fauna, phylogenies, genetics and models. Bull Entomol Res 95:69–114. https://doi.org/10.1079/BER2004350

    CAS  Article  PubMed  Google Scholar 

  6. Bond JE, Coyle FA (1995) Observations on the natural history of an Ummidia trapdoor spider from Costa Rica (Araneae, Ctenizidae). J Arachnol 23(3):157–164

    Google Scholar 

  7. Bradley RA (1993) Seasonal activity patterns in Sydney funnel-web spiders, Atrax spp. (Araneae: Hexathelidae). Bull Br Arachnol Soc 9(6):189–192

    Google Scholar 

  8. Bristowe WS (1939) The comity of spiders, vol. I. Ray Society, London

    Google Scholar 

  9. Castalanelli MA, Teale R, Rix MG, Kennington WJ, Harvey MS (2014) Barcoding of mygalomorph spiders (Araneae: Mygalomorphae) in the Pilbara bioregion of Western Australia reveals a highly diverse biota. Invertebr Syst 28:375–385. doi:https://doi.org/10.1071/IS13058

    CAS  Article  Google Scholar 

  10. Coyle FA (1983) Aerial dispersal by mygalomorph spiderlings (Araneae, Mygalomorphae). J Arachnol 11(2):283–286

    Google Scholar 

  11. Coyle FA (1985) Ballooning behavior of Ummidia spiderlings (Araneae, Ctenizidae). J Arachnol 13(1):137–138

    Google Scholar 

  12. Coyle FA, Icenogle WR (1994) Natural history of the Californian trapdoor spider genus Aliatypus (Araneae, Antrodiaetidae). J Arachnol 22(3):225–255

    Google Scholar 

  13. Coyle FA, Greenstone MH, Hultsch AL, Morgan CE (1985) Ballooning mygalomorphs: estimates of the masses of Sphodros and Ummidia ballooners (Araneae: Atypidae, Ctenizidae). J Arachnol 13(3):291–296

    Google Scholar 

  14. Cutler B, Guarisco H (1995) Dispersal aggregation of Sphodros fitchi (Araneae, Atypidae). J Arachnol 23:205–206

    Google Scholar 

  15. Decae AE (1987) Dispersal: ballooning and other mechanisms. In: Nentwig W (ed) Ecophysiology of spiders. Springer Verlag, Berlin, pp 348–356

    Chapter  Google Scholar 

  16. Dor A, Hénaut Y (2012) Silk use and spiderling behavior in the tarantula Brachypelma vagans (Araneae: Theraphosidae). Acta Zool Mex 28(1):1–12

    Google Scholar 

  17. Eberhard WG (2006) Dispersal by Ummidia spiderlings (Araneae, Ctenizidae): ancient roots of aerial webs and orientation? J Arachnol 34(1):254–257

    Article  Google Scholar 

  18. Enock E (1885) The life-history of Atypus piceus. Sulz Trans Entomol Soc Lond 1885:389–420

    Google Scholar 

  19. Ferretti N, Pompozzi G, Copperi S, Schwerdt L (2013) Aerial dispersal by Actinopus spiderlings (Araneae: Actinopodidae). J Arachnol 41:407–408. https://doi.org/10.1636/J13-27.1

    Article  Google Scholar 

  20. Ferretti N, Copperi S, Schwerdt L, Pompozzi G (2014) Another migid in the wall: natural history of the endemic and rare spider Calathotarsus simoni (Mygalomorphae: Migidae) from a hill slope in central Argentina. J Nat Hist 48(31–32):1907–1921. https://doi.org/10.1080/00222933.2014.886344

    Article  Google Scholar 

  21. Fisher JR, Fisher DM, Skvarla MJ, Dowling APG (2014) Pre-ballooning in Ummidia Thorell 1875 (Araneae: Ctenizidae) from the Interior Highlands, USA: second account from the region and review of mygalomorph ballooning. J Arachnol 42(3):318–321. https://doi.org/10.1636/B14-43.1

    Article  Google Scholar 

  22. Global Biodiversity Information Facility (2020) https://www.gbif.org. Accessed 19 Oct 2020

  23. Godwin RL, Opatova V, Garrison NL, Hamilton CA, Bond JE (2018) Phylogeny of a cosmopolitan family of morphologically conserved trapdoor spiders (Mygalomorphae, Ctenizidae) using Anchored Hybrid Enrichment, with a description of the family, Halonoproctidae Pocock 1901. Mol Phylogenetics Evol 126:303–313. https://doi.org/10.1016/j.ympev.2018.04.008

    Article  Google Scholar 

  24. Harrison SE, Rix MG, Harvey MS, Austin AD (2016) An African mygalomorph lineage in temperate Australia: the trapdoor spider genus Moggridgea (Araneae: Migidae) on Kangaroo Island, South Australia. Austral Entomol 55:208–216. https://doi.org/10.1111/aen.12172

    Article  Google Scholar 

  25. Harrison SE, Harvey MS, Cooper SJB, Austin AD, Rix MG (2017) Across the Indian Ocean: a remarkable example of trans-oceanic dispersal in an austral mygalomorph spider. PLoS One 12(8):e0180139. https://doi.org/10.1371/journal.pone.0180139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Harvey MS (2002) Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebr Syst 16:555–570

    Article  Google Scholar 

  27. Harvey MS, Hillyer MJ, Main BY, Moulds TA, Raven RJ, Rix MG, Vink CJ, Huey JA (2018) Phylogenetic relationships of the Australasian open-holed trapdoor spiders (Araneae: Mygalomorphae: Nemesiidae: Anaminae): multi-locus molecular analyses resolve the generic classification of a highly diverse fauna. Zool J Linn Soc 184:407–452

    Article  Google Scholar 

  28. Hedin M, Derkarabetian S, Ramirez MJ, Vink C, Bond JE (2018) Phylogenomic reclassification of the world’s most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Sci Rep 8(1):1636. doi:https://doi.org/10.1038/s41598-018-19946-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Hogg HR (1902) On some additions to the Australian spiders of the suborder Mygalomorphae. Proc Zool Soc Lond 72(II):1):121–142

    Google Scholar 

  30. Huey JA, Hillyer MJ, Harvey MS (2019) Phylogenetic relationships and biogeographic history of the Australian trapdoor spider genus Conothele (Araneae: Mygalomorphae: Halonoproctidae): diversification into arid habitats in an otherwise tropical radiation. Invertebr Syst 33:628–643. https://doi.org/10.1071/IS18078

    Article  Google Scholar 

  31. Janowski-Bell M, Horner NV (1999) Movement of the male brown tarantula, Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. J Arachnol 27(2):503–512

    Google Scholar 

  32. Kuwada-Kusunose T, Sakai T, Suzuki K (2016) Observations of the early postembryonic development and dispersal of the purse-web spider Calommata signata (Araneae: Atypidae). Acta Arachnol 65(1):43–47

    Article  Google Scholar 

  33. Main BY (1957) Occurrence of the trap-door spider Conothele malayana (Doleschall) in Australia (Mygalomorphae: Ctenizidae). West Aust Nat 5(7):209–216

    Google Scholar 

  34. Main BY (1981) Australian spiders: diversity, distribution and ecology. In: Keast A (ed) Ecological biogeography of Australia. Junk, The Hague, pp 808–852

    Google Scholar 

  35. Main BY (1985a) Further studies on the systematics of ctenizid trapdoor spiders: a review of the Australian genera (Araneae: Mygalomorphae : Ctenizidae). Aust J Zool Suppl Ser 108:1–84

    Article  Google Scholar 

  36. Main BY (1985b) Mygalomorphae. Zool Cat Aust 3:1–48

    Google Scholar 

  37. Mason LD, Bateman PW, Wardell-Johnson GW (2018) The pitfalls of short-range endemism: high vulnerability to ecological and landscape traps. PeerJ 6:e4715. https://doi.org/10.7717/peerj.4715

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miglio LT, Harms D, Framenau VW, Harvey MS (2014) Four new Mouse Spider species (Araneae, Mygalomorphae, Actinopodidae, Missulena) from Western Australia. ZooKeys 410:121–148. https://doi.org/10.3897/zookeys.410.7156

    Article  Google Scholar 

  39. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP (2009) Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. PloS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed1000097

    Article  PubMed  PubMed Central  Google Scholar 

  40. Morley EL, Robert D (2018) Electric fields elicit ballooning in spiders. Curr Biol 28(14):2324-2330 e2322. https://doi.org/10.1016/j.cub.2018.05.057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Muma MH, Muma KE (1945) Biological notes on Atypus bicolor Lucas. Entomol News 56:122–126

    Google Scholar 

  42. Opatova V, Bond JE, Arnedo MA (2016) Uncovering the role of the Western Mediterranean tectonics in shaping the diversity and distribution of the trap-door spider genus Ummidia (Araneae, Ctenizidae). J Biogeogr 43:1955–1966. https://doi.org/10.1111/jbi.12838

    Article  Google Scholar 

  43. Opatova V, Hamilton CA, Hedin M, Montes de Oca L, Král J, Bond JE (2020) Phylogenetic systematics and evolution of the spider infraorder Mygalomorphae using genomic scale data. Syst Biol 69(4):671–707. https://doi.org/10.1093/sysbio/syz064

    Article  PubMed  Google Scholar 

  44. Pedersen AA, Loeschcke V (2001) Conservation genetics of peripheral populations of the mygalomorph spider Atypus affinis (Atypidae) in northern Europe. Mol Ecol 10:1133–1142

    CAS  Article  Google Scholar 

  45. Pérez-Miles F, Perafán C (2017) Behavior and biology of Mygalomorphae. In: Viera C, Gonzaga MO (eds) Behaviour and ecology of spiders, contributions from the Neotropical region. Springer, Cham, pp 29–54. https://doi.org/10.1007/978-3-319-65717-2_2

    Chapter  Google Scholar 

  46. Pétillon J, Deruytter D, Decae A, Renault D, Bonte D (2012) Habitat use, but not dispersal limitation, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim Biol 62:181–192. https://doi.org/10.1163/157075611X617094

    Article  Google Scholar 

  47. Platnick NI (2020) Spiders of the world: a natural history. Ivy Press, London

    Book  Google Scholar 

  48. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  49. Raven RJ (1988) A revision of the mygalomorph spider genus Idioctis (Araneae, Barychelidae). Am Mus Novit 2929:1–14

    Google Scholar 

  50. Reichling SB (2000) Group dispersal in juvenile Brachypelma vagans (Araneae, Theraphosidae). J Arachnol 28(2):248–250. https://doi.org/10.1636/0161-8202(2000)028[0248:GDIJBV]2.0.CO;2

    Article  Google Scholar 

  51. Rezác M, Rezácová V, Pekár S (2007) The distribution of purse-web Atypus spiders (Araneae: Mygalomorphae) in central Europe is constrained by microclimatic continentality and soil compactness. J Biogeogr 34:1016–1027. https://doi.org/10.1111/j.1365-2699.2006.01670.x

    Article  Google Scholar 

  52. Rix MG, Raven RJ, Main BY, Harrison SE, Austin AD, Cooper SJB, Harvey MS (2017) The Australasian spiny trapdoor spiders of the family Idiopidae (Mygalomorphae: Arbanitinae): a relimitation and revision at the generic level. Invertebr Syst 31:566–634. https://doi.org/10.1071/IS16065

    Article  Google Scholar 

  53. Rix MG, Wilson JD, Rix AG, Wojcieszek AM, Huey JA, Harvey MS (2019) Population demography and biology of a new species of giant spiny trapdoor spider (Araneae: Idiopidae: Euoplos) from inland Queensland: developing a ‘slow science’ study system to address a conservation crisis. Austral Entomol 58:282–297. https://doi.org/10.1111/aen.12367

    Article  Google Scholar 

  54. Shaw EM, Bennett SP, Wheater CP (2011) Distribution of Brachypelma vagans (Theraphosidae) burrows and their characteristics in Belize over two years. J Arachnol 39(3):515–518. https://doi.org/10.1636/P10-39.1

    Article  Google Scholar 

  55. Shillington C, McEwen B (2006) Activity of juvenile tarantulas in and around the maternal burrow. J Arachnol 34(1):261–265. https://doi.org/10.1636/S05-18.1

    Article  Google Scholar 

  56. Stork NE (2018) How many species of insects and other terrestrial arthropods are there on Earth? Annu Rev Entomol 63:31–45. https://doi.org/10.1146/annurev-ento-020117-043348

    CAS  Article  PubMed  Google Scholar 

  57. Weinmann D (2003) Population investigations on a colony of the tarantula Megaphobema robustum (Ausserer, 1873) in Colombia (Araneae, Theraphosidae, Theraphosinae). Arthropoda 11(3):23–30

    Google Scholar 

  58. World Spider Catalog (2020) Vol version 21.5. https://doi.org/10.24436/2

  59. Yáñez M, Floater G (2000) Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araneae: Theraphosidae) in Mexico. Biodivers Conserv 9:795–810

    Article  Google Scholar 

Download references

Acknowledgements

We thank Emily Hoffmann for help with producing Fig. 3, Robert Raven and Michael Rix for assistance with the taxonomic literature, and Jonas Wolff for the opportunity to contribute with this special issue. Two anonymous reviewers also provided invaluable comments during the review process. We are in debt with Atlas of Living Australia, Global Biodiversity Information Facility and the World Spider Catalog for invaluable occurrence and taxonomic data.

Funding

This study was supported by National Geographic (NGS-62237R-19), Australian Geographic (103961107) and Macquarie University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruno A. Buzatto.

Ethics declarations

Conflict of interest

The authors have no conflict of interest or conflict of interests to declare.

Consent for publication

All the authors approve the publication of the current version.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buzatto, B.A., Haeusler, L. & Tamang, N. Trapped indoors? Long-distance dispersal in mygalomorph spiders and its effect on species ranges. J Comp Physiol A 207, 279–292 (2021). https://doi.org/10.1007/s00359-020-01459-x

Download citation

Keywords

  • Ballooning
  • Locomotion
  • Mygalomorphae
  • Short-range endemism
  • Species distribution