Skip to main content
Log in

Sound localization in barn owls studied with manipulated head-related transfer functions: beyond broadband interaural time and level differences

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Interaural time and level differences are important cues for sound localization. We wondered whether the broadband information contained in these two cues could fully explain the behavior of barn owls and responses of midbrain neurons in these birds. To tackle this problem, we developed a novel approach based on head-related transfer functions. These filters contain the complete information present at the eardrum. We selected positions in space characterized by equal broadband interaural time and level differences. Stimulation from such positions provides reduced information to the owl. We show that barn owls are able to discriminate between such positions. In many cases, but not all, the owls may have used spectral components of interaural level differences that exceeded the known behavioral resolution and variability for discrimination. Alternatively, the birds may have used template matching. Likewise, neurons in the optic tectum of the barn owl, a nucleus involved in sensorimotor integration, contained more information than is available in the broadband interaural time and level differences. Thus, these data show that more information is available and used by barn owls for sound localization than carried by broadband interaural time and level differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alves-Pinto A, Palmer AR, Lopez-Poveda EA (2014) Perception and coding of high-frequency spectral notches: potential implications for sound localization. Front Neurosci 8:112. https://doi.org/10.3389/fnins.2014.00112.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  • Anbuhl KL, Benichoux V, Greene NTR, Brown AD, Tollin DJ (2017) Development of the head, pinnae, and acoustical cues to sound location in a precocial species, the guinea pig (Cavia porcellus). Hear Res 356:35–50

    PubMed  PubMed Central  Google Scholar 

  • Arthur BJ (2004) Sensitivity to spectral interaural intensity difference cues in space-specific neurons of the barn owl. J Comp Physiol A 190:91–104

    CAS  Google Scholar 

  • Bala AD, Spitzer MW, Takahashi TT (2003) Prediction of auditory spatial acuity from neural images on the owl's auditory space map. Nature 424:771–774

    CAS  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing. Revised edition. MIT Press, Cambridge

    Google Scholar 

  • Brainard MS, Knudsen EI, Esterly SD (1992) Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. J Acoust Soc Am 91:1015–1027

    CAS  PubMed  Google Scholar 

  • Bremen P, Poganiatz I, von Campenhausen H, Wagner H (2007) Sensitivity to interaural time difference and representation of azimuth in central nucleus of inferior colliculus in the barn owl. J Comp Physiol A 193:99–112

    Google Scholar 

  • Cazettes F, Fischer BJ, Pena JL (2014) Spatial cue reliability drives frequency tuning in the barn owl's midbrain. eLife 3:e04854

    PubMed  PubMed Central  Google Scholar 

  • Cazettes F, Fischer BJ, Pena JL (2016) Cue reliability represented in the shape of tuning curves in the owl’s sound localization system. J Neurosci 36:2101–2110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cazettes F, Fischer BJ, Beckert MV, Pena JL (2018) Emergence of an adaptive command from orienting behaviour in premotor brainstem neurons of barn owls. J Neurosci 38:7270–7279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Day ML, Delgutte B (2013) Decoding sound source location and separation using neural population activity patterns. J Neurosci 33:15837–15847

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Bello WM, Knudsen EI (2004) Multiple sites of adaptive plasticity in the owl's auditory localization pathway. J Neurosci 24:6853–6861

    Google Scholar 

  • Dietz M, Lestang JH, Majdak P, Stern RM, Marquardt T, Ewert SD, Hartmann WM, Goodman DFM (2018) A framework for testing and comparing binaural models. Hear Res 360:92–106

    PubMed  Google Scholar 

  • Du Lac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63:131–146

    PubMed  Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the barn owl: a comparison with other owls. J Comp Physiol A 182:695–702

    Google Scholar 

  • Egnor R (2001) Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba). J Comp Physiol A 187:589–595

    CAS  PubMed  Google Scholar 

  • Euston DR, Takahashi TT (2002) From spectrum to space: the contribution of level difference cues to spatial receptive fields in the barn owl inferior colliculus. J Neurosci 22:284–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferger R, Pawlowsky K, Singheiser M, Wagner H (2018) Response adaptation in the barn owl's auditory space map. J Neurophysiol 119:1235–1247

    PubMed  Google Scholar 

  • Fischer BJ, Pena JL (2011) Owl's behavior and neural representation predicted by Bayesian inference. Nat Neurosci 14:1061–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer BJ, Pena JL (2017) Optimal nonlinear cue integration for sound localization. J Comput Neurosci 42:37–52. https://doi.org/10.1007/s10827-016-0626-4

    Article  PubMed  Google Scholar 

  • Grothe B (2018) How the barn owl computes auditory space. Trends Neurosci 41:115–117. https://doi.org/10.1016/j.tins.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  • Hausmann L, von Campenhausen M, Endler F, Singheiser M, Wagner H (2009) Improvements of sound localization abilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal. PLoS One 4:e7721

    PubMed  PubMed Central  Google Scholar 

  • Keating P, Nodal FR, Gananandan K, Schulz AL, King AJ (2013) Behavioral sensitivity to broadband binaural localization cues in the ferret. J Assoc Res Otolaryngol 14:561–572

    PubMed  PubMed Central  Google Scholar 

  • Keating P, Nodal FR, King AJ (2014) Behavioural sensitivity to binaural spatial cues in ferrets: evidence for plasticity in the duplex theory of sound localization. Eur J Neurosci 39:197–206

    PubMed  Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34

    CAS  PubMed  Google Scholar 

  • Kettler L, Griebel H, Ferger R, Wagner H (2017) Combination of interaural level and time difference in azimuthal sound localization in owls. eNeuro 4:1–13. https://doi.org/10.1523/ENEURO.0238-17.2017

    Article  Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen EI, Konishi M (1978) A neural map of auditory space in the owl. Science 200:795–797

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl measured with the search coil technique. J Comp Physiol 133:1–11

    Google Scholar 

  • Koka K, Jones HG, Thornton JL, Lupo JE, Tollin DJ (2011) Sound pressure transformations by the head and pinnae of the adult Chinchilla (Chinchilla lanigera). Hear Res 272:135–147

    PubMed  Google Scholar 

  • Koka K, Read HL, Tollin DJ (2008) The acoustical cues to sound location in the rat: measurements of directional transfer functions. J Acoust Soc Am 123:4297–4309

    PubMed  PubMed Central  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424

    Google Scholar 

  • Konishi M, Kenuk AS (1975) Discrimination of noise spectra by memory in the barn owl. J Comp Physiol 97:55–58

    Google Scholar 

  • Krumm B, Klump GM, Koeppl C, Langemann U (2019) The barn owls‘ minimum audible angle. PLos One 14(8):e0220652

  • Majdak P, Walder T, Laback B (2013) Effect of long-term training on sound localization performance with spectrally warped and band-limited head-related transfer functions. J Acoust Soc Am 134:2148–2159

    PubMed  Google Scholar 

  • Middlebrooks JC (2015) Sound localization. Handb Clin Neurol 129:99–116

    PubMed  Google Scholar 

  • Mogdans J, Knudsen EI (1992) Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum. J Neurosci 12:3473–3484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moiseff A (1989a) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164:629–636

    CAS  PubMed  Google Scholar 

  • Moiseff A (1989b) Bi-coordinate sound localization by the barn owl. J Comp Physiol A 164:637–644

    CAS  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J Neurosci 9:2591–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poganiatz I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level difference on head-turning behavior. J Comp Physiol A 187:225–233

    CAS  PubMed  Google Scholar 

  • Poganiatz I, Nelken I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of interaural time difference on head-turning behavior. J Ass Res Otolaryng 2:1–21

    CAS  Google Scholar 

  • Quine DB, Konishi M (1974) Absolute frequency discrimination in the barn owl. J comp Physiol 93:347–360

    Google Scholar 

  • Rice JJ, May BJ, Spirou GA, Young ED (1992) Pinna-based spectral cues for sound localization in cat. Hear Res 58:132–152

    CAS  PubMed  Google Scholar 

  • Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H (2014) The avian head induces cues for sound localization in elevation. PLoS One 9:e112178

    PubMed  PubMed Central  Google Scholar 

  • Singheiser M, Plachta DTT, Brill S, Bremen P, van der Willigen R, Wagner H (2010) Target-approaching behavior of barn owls (Tyto alba): influence of sound frequency. J Comp Physiol A 196:227–240

    Google Scholar 

  • Slee SJ, Young ED (2010) Sound localization cues in the marmoset monkey. Hear Res 260:96–108

    PubMed  Google Scholar 

  • Spezio ML, Takahashi TT (2003) Frequency-specific interaural level difference tuning predicts spatial response patterns of space-specific neurons in the barn owl inferior colliculus. J Neurosci 23:4677–4688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spezio ML, Keller CH, Marrocco RT, Takahashi TT (2000) Head-related transfer functions of the Rhesus monkey. Hear Res 144:73–88

    CAS  PubMed  Google Scholar 

  • Sterbing SJ, Hartung K, Hoffmann KP (2003) Spatial tuning to virtual sounds in the inferior colliculus of the guinea pig. J Neurophysiol 90:2648–2659

    PubMed  Google Scholar 

  • Takahashi TT (2010) How the owl tracks its prey–II. J Exp Biol 213:3399–3408. https://doi.org/10.1242/jeb.031195

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Opstal AJ, Vliegen J, van Esch T (2017) Reconstructing spectral cues for sound localization from responses to rippled noise stimuli. PLoS One 12:e0174185

    PubMed  PubMed Central  Google Scholar 

  • von Campenhausen M, Wagner H (2006) Influence of the facial ruff on the sound-receiving characteristics of the barn owl's ears. J Comp Physiol A 192:1073–1082

    Google Scholar 

  • Vonderschen K, Wagner H (2009) Tuning to interaural time difference and frequency differs between the auditory arcopallium and the external nucleus of the inferior colliculus. J Neurophysiol 101:2348–2361

    PubMed  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl's space map. J Neurosci 13:371–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner H, Asadollahi A, Bremen P, Endler F, Vonderschen K, von Campenhausen M (2007) Distribution of interaural time difference in the barn owl’s inferior colliculus in the low- and high-frequency ranges. J Neurosci 27:4191–4200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner H, Kettler L, Orlowski J, Tellers P (2013) Neuroethology of prey capture in the barn owl (Tyto alba L.). J Physiol (Paris) 107:51–61

    Google Scholar 

  • Wightman FL, Kistler DJ (1989a) Headphone simulation of free field listening. I: stimulus synthesis. J Acoust Soc Am 85:858–867

    CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1989b) Headphone simulation of free-field listening. II: Psychophysical validation. J Acoust Soc Am 85:868–878

    CAS  PubMed  Google Scholar 

  • Wood KC, Town SM, Bizley JK (2019) Neurons in primary auditory cortex represent sound source location in a cue-invariant manner. Nat Commun 10:3019. https://doi.org/10.1038/s41467-019-10868-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young ED, Rice JJ, Tong SC (1996) Effects of pinna position on head-related transfer functions in the cat. J Acoust Soc Am 99:3064–3076

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kira Zeevaert helped with owl training. Lisanne Schulten helped with electrophysiological experiments. Brian Fischer gratefully provided the data and code for the variability analysis. The comments by Lutz Kettler, Thomas Künzel and Jose Pena on an earlier version of the manuscript helped a lot to improve the manuscript. This research was sponsored by a grant of the German science foundation (DFG) to HW (Wa606/26-1) and Hartmut Führ (Fu402/6-1). HW was further supported by the German Research Foundation (DFG) through grant number 368482240/GRK2416.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Wagner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schillberg, P., Brill, S., Nikolay, P. et al. Sound localization in barn owls studied with manipulated head-related transfer functions: beyond broadband interaural time and level differences. J Comp Physiol A 206, 477–498 (2020). https://doi.org/10.1007/s00359-020-01410-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-020-01410-0

Keywords

Navigation