Neuromodulation of insect motion vision

  • Karen Y. ChengEmail author
  • Mark A. Frye
Original Paper


Insects use vision to choose from a repertoire of flexible behaviors which they perform for survival. Decisions for behavioral plasticity are achieved through the neuromodulation of sensory processes, including motion vision. Here, we briefly review the anatomy of the insect motion vision system. Next, we review the neuromodulatory influences on motion vision. Serotonin modulates peripheral visual processing, whereas octopamine modulates all stages of visual processing tested to date. The physiological and behavioral states that elicit neuromodulation of motion vision include locomotion, changes in internal physiological state such as hunger, and changes in the external environment such as the presence of additional sensory cues. The direction of influence between these states and neuromodulators remains unknown. The influence of neuromodulators on motion vision circuitry has been revealed mostly through pharmacological application, which broadcasts widely with unnatural spatiotemporal dynamics. Thus, insight from this method is limited. Aminergic neurons likely act in local hierarchical fashion rather than globally as a group. As genetic tools advance in Drosophila, future work restricting the experimental focus to subpopulations of modulatory neurons will provide insight into the local functional modifications of visual circuits by interacting neuromodulators.


Octopamine Visual circuits Drosophila Serotonin Multi-modal integration 



Chlordimeform, octopamine receptor agonist


Lobula columnar cells, a class of VPNs


Lobula plate tangential cells, a class of VPNs

T4 and T5

Columnar retinotopic neuron classes with dendrites in the medulla (T4) and lobula (T5) and axon terminals in the lobula plate


Neuronal tyrosine decarboxylase 2, denotes a Gal4 line that labels octopaminergic/tyraminergic neurons


Visual projection neurons



This work was funded by the National Institutes of Health (F31EY029599 to K.Y.C.) and the National Science Foundation (IOS-1455869 to M.A.F.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ache JM, Namiki S, Lee A, Branson K, Card GM (2019a) State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nat Neurosci 22:1132–1139PubMedCrossRefGoogle Scholar
  2. Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM (2019b) Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr Biol 29:1073–1081PubMedCrossRefGoogle Scholar
  3. Adamo SA, Chase R (1991) “Central arousal” and sexual responsiveness in the snail, Helix aspersa. Behav Neural Biol 55:194–213PubMedCrossRefGoogle Scholar
  4. Adamo SA, Linn CE, Hoy RR (1995) The role of neurohormonal octopamine during ‘fight or flight’ behaviour in the field cricket Gryllus bimaculatus. J Exp Biol 198:1691–1700PubMedGoogle Scholar
  5. Alekseyenko OV, Chan Y-B, Li R, Kravitz EA (2013) Single dopaminergic neurons that modulate aggression in Drosophila. Proc Natl Acad Sci USA 110:6151–6156PubMedCrossRefGoogle Scholar
  6. Alekseyenko OV, Chan Y-B, de la Fernandez MP, Bülow T, Pankratz MJ, Kravitz EA (2014) Single serotonergic neurons that modulate aggression in Drosophila. Curr Biol 24:2700–2707PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alekseyenko OV, Chan Y-B, Okaty BW, Chang Y, Dymecki SM, Kravitz EA (2019) Serotonergic modulation of aggression in Drosophila involves GABAergic and cholinergic opposing pathways. Curr Biol 29:2145–2156.e5PubMedCrossRefGoogle Scholar
  8. Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260PubMedCrossRefGoogle Scholar
  9. Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A (2015) Functional specialization of neural input elements to the Drosophila ON motion detector. Curr Biol 25:2247–2253PubMedCrossRefGoogle Scholar
  10. Aptekar JW, Keleş MF, Lu PM, Zolotova NM, Frye MA (2015) Neurons forming optic glomeruli compute figure–ground discriminations in Drosophila. J Neurosci 35:7587–7599PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arenz A, Drews MS, Richter FG, Ammer G, Borst A (2017) The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements. Curr Biol 27:929–944PubMedCrossRefGoogle Scholar
  12. Bacon JP, Thompson KS, Stern M (1995) Identified octopaminergic neurons provide an arousal mechanism in the locust brain. J Neurophysiol 74:2739–2743PubMedCrossRefGoogle Scholar
  13. Barron AB, Schulz DJ, Robinson GE (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol A 188:603–610CrossRefGoogle Scholar
  14. Beeman RW, Matsumura F (1973) Chlordimeform: a pesticide acting upon amine regulatory mechanisms. Nature 242:273–274PubMedCrossRefGoogle Scholar
  15. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C (2014) Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–430PubMedPubMedCentralCrossRefGoogle Scholar
  16. Benezet HJ, Chang K-M, Knowles CO (1978) Formamidine pesticides—metabolic aspects of neurotoxicity. Pest and venom neurotox. Springer, Boston, pp 189–206CrossRefGoogle Scholar
  17. Bhandawat V, Maimon G, Dickinson MH, Wilson RI (2010) Olfactory modulation of flight in Drosophila is sensitive, selective and rapid. J Exp Biol 213:3625–3635PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blenau W, Baumann A (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38PubMedCrossRefGoogle Scholar
  19. Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70PubMedCrossRefGoogle Scholar
  20. Borst A, Haag J, Mauss AS (2019) How fly neurons compute the direction of visual motion. J Comp Physiol A. CrossRefPubMedGoogle Scholar
  21. Brembs B, Christiansen F, Pflüger HJ, Duch C (2007) Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J Neurosci 27:11122–11131PubMedPubMedCentralCrossRefGoogle Scholar
  22. Britten KH (2008) Mechanisms of self-motion perception. Annu Rev Neurosci 31:389–410PubMedCrossRefGoogle Scholar
  23. Budick SA, Dickinson MH (2006) Free-flight responses of Drosophila melanogaster to attractive odors. J Exp Biol 209:3001–3017PubMedCrossRefGoogle Scholar
  24. Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, New YorkCrossRefGoogle Scholar
  25. Busch S, Selcho M, Ito K, Tanimoto H (2009) A map of octopaminergic neurons in the Drosophila brain. J Comp Neurol 513:643–667PubMedCrossRefGoogle Scholar
  26. Busch C, Borst A, Mauss AS (2018) Bi-directional control of walking behavior by horizontal optic flow sensors. Curr Biol 28:4037–4045.e5PubMedCrossRefGoogle Scholar
  27. Certel SJ, Savella MG, Schlegel DCF, Kravitz EA (2007) Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci USA 104:4706–4711PubMedCrossRefGoogle Scholar
  28. Chen B, Meinertzhagen IA, Shaw SR (1999) Circadian rhythms in light-evoked responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J Comp Physiol A 185:393–404PubMedCrossRefGoogle Scholar
  29. Cheng KY, Colbath RA, Frye MA (2019) Olfactory and neuromodulatory signals reverse visual object avoidance to approach in Drosophila. Curr Biol 29:2058–2065.e2PubMedCrossRefGoogle Scholar
  30. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20:1470–1475PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008PubMedCrossRefGoogle Scholar
  32. Chow DM, Frye MA (2008) Context-dependent olfactory enhancement of optomotor flight control in Drosophila. J Exp Biol 211:2478–2485PubMedCrossRefGoogle Scholar
  33. Chow DM, Theobald JC, Frye MA (2011) An olfactory circuit increases the fidelity of visual behavior. J Neurosci 31:15035–15047PubMedPubMedCentralCrossRefGoogle Scholar
  34. Christensen TA, Carlson AD (1982) The neurophysiology of larval firefly luminescence: direct activation through four bifurcating (DUM) neurons. J Comp Physiol A 148:503–514CrossRefGoogle Scholar
  35. Chyb S, Hevers W, Forte M, Wolfgang WJ, Selinger Z, Hardie RC (1999) Modulation of the light response by cAMP in Drosophila photoreceptors. J Neurosci 19:8799–8807PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J (2005) Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem 280:14948–14955PubMedCrossRefGoogle Scholar
  37. Crocker A, Sehgal A (2008) Octopamine regulates sleep in drosophila through protein kinase A-dependent mechanisms. J Neurosci 28:9377–9385PubMedPubMedCentralCrossRefGoogle Scholar
  38. Crocker A, Shahidullah M, Levitan IB, Sehgal A (2010) Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65:670–681PubMedPubMedCentralCrossRefGoogle Scholar
  39. Crow T, Bridge MS (1985) Serotonin modulates photoresponses in Hermissenda type-B photoreceptors. Neurosci Lett 60:83–88PubMedCrossRefGoogle Scholar
  40. Cuttle MF, Hevers W, Laughlin SB, Hardie RC (1995) Diurnal modulation of photoreceptor potassium conductance in the locust. J Comp Physiol A 176:307–316CrossRefGoogle Scholar
  41. de Haan R, Lee Y-J, Nordström K (2012) Octopaminergic modulation of contrast sensitivity. Front Integr Neurosci 6:55PubMedPubMedCentralGoogle Scholar
  42. Dierick HA, Greenspan RJ (2007) Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 39:678–682PubMedCrossRefGoogle Scholar
  43. Dolan M-J, Frechter S, Bates AS, Dan C, Huoviala P, Roberts JV, Schlegel P, Dhawan S, Tabano R, Dionne H, Christoforou C, Close K, Sutcliffe B, Guiliani B, Li F, Costa M, Ihrke G, Meissner GW, Bock D, Aso Y, Rubin GM, Jefferis GSXE (2019) Neurogenetic dissection of the Drosophila lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body. Elife 8:e43079PubMedPubMedCentralCrossRefGoogle Scholar
  44. Duistermars BJ, Chow DM, Frye MA (2009) Flies require bilateral sensory input to track odor gradients in flight. Curr Biol 19:1301–1307PubMedPubMedCentralCrossRefGoogle Scholar
  45. Elias MS, Evans PD (1983) Histamine in the insect nervous system: distribution, synthesis and metabolism. J Neurochem 41:562–568PubMedCrossRefGoogle Scholar
  46. Eskin A, Maresh RD (1982) Serotonin or electrical optic nerve stimulation increases the photosensitivity of the Aplysia eye. Comp Biochem Physiol C 73:27–31CrossRefGoogle Scholar
  47. Evans PD (1980) Biogenic amines in the insect nervous system. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology. Academic Press, London, pp 317–473Google Scholar
  48. Evans PD, Gee JD (1980) Action of formamidine pesticides on octopamine receptors. Nature 287:60–62PubMedCrossRefGoogle Scholar
  49. Evans PD, Maqueira B (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5:111–118PubMedCrossRefGoogle Scholar
  50. Evans PD, Siegler MV (1982) Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle. J Physiol 324:93–112PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787–792PubMedCrossRefGoogle Scholar
  52. Farooqui T (2012) Review of octopamine in insect nervous systems. J Insect Physiol 4:1–17Google Scholar
  53. Farooqui T, Vaessin H, Smith BH (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 50:701–713PubMedCrossRefGoogle Scholar
  54. Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A golgi analysis of wild-type structure. Cell Tissue Res 258:441–475CrossRefGoogle Scholar
  55. Fisher YE, Leong JCS, Sporar K, Ketkar MD, Gohl DM, Clandinin TR, Silies M (2015a) A class of visual neurons with wide-field properties is required for local motion detection. Curr Biol 25:3178–3189PubMedCrossRefGoogle Scholar
  56. Fisher YE, Silies M, Clandinin TR (2015b) Orientation selectivity sharpens motion detection in Drosophila. Neuron 88:390–402PubMedPubMedCentralCrossRefGoogle Scholar
  57. Frye M (2015) Elementary motion detectors. Curr Biol 25:R215–R217PubMedCrossRefGoogle Scholar
  58. Frye MA, Dickinson MH (2004) Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila. J Exp Biol 207:123–131PubMedCrossRefGoogle Scholar
  59. Frye MA, Tarsitano M, Dickinson MH (2003) Odor localization requires visual feedback during free flight in Drosophila melanogaster. J Exp Biol 206:843–855PubMedCrossRefGoogle Scholar
  60. Fujiwara T, Chiappe E (2017) Motor-driven modulation in visual neural circuits. In: Çelik A, Wernet MF (eds) Decoding neural circuit structure and function: cellular dissection using genetic model organisms. Springer International Publishing, Cham, pp 261–281CrossRefGoogle Scholar
  61. Fujiwara T, Cruz TL, Bohnslav JP, Chiappe ME (2017) A faithful internal representation of walking movements in the Drosophila visual system. Nat Neurosci 20:72–81PubMedCrossRefGoogle Scholar
  62. Goosey MW, Candy DJ (1980) The d-octopamine content of the haemolymph of the locust, Schistocerca americana gregaria and its elevation during flight. Insect Biochem 10:393–397CrossRefGoogle Scholar
  63. Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4:199–208PubMedCrossRefGoogle Scholar
  64. Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol A 161:201–213PubMedCrossRefGoogle Scholar
  65. Harris RA, O’Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28:595–606PubMedCrossRefGoogle Scholar
  66. Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. Biol Cybern 45:143–156CrossRefGoogle Scholar
  67. Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J Comp Physiol A 149:163–177CrossRefGoogle Scholar
  68. Heslop JP, Ray JW (1959) The reaction of the cockroach Periplaneta americana to bodily stress and DDT. J Insect Physiol 3:395–401CrossRefGoogle Scholar
  69. Hevers W, Hardie RC (1995) Serotonin modulates the voltage dependence of delayed rectifier and Shaker potassium channels in Drosophila photoreceptors. Neuron 14:845–856PubMedCrossRefGoogle Scholar
  70. Hildreth EC, Koch C (1987) The analysis of visual motion: from computational theory to neuronal mechanisms. Annu Rev Neurosci 10:477–533PubMedCrossRefGoogle Scholar
  71. Hiripi L, Nagy L, Hollingworth RM (1999) In vitro and in vivo effects of formamidines in locust (Locusta migratoria migratorioides). Acta Biol Hung 50:81–87PubMedGoogle Scholar
  72. Hollingworth RM, Murdock LL (1980) Formamidine pesticides: octopamine-like actions in a firefly. Science 208:74–76PubMedCrossRefGoogle Scholar
  73. Homberg U (1994) Distribution of neurotransmitters in the insect brain. Gustav Fischer Verlag, StuttgartGoogle Scholar
  74. Inagaki HK, Ben-Tabou de-Leon S, Wong AM, Jagadish S, Ishimoto H, Barnea G, Kitamoto T, Axel R, Anderson DJ (2012) Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148:583–595PubMedPubMedCentralCrossRefGoogle Scholar
  75. Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson DJ (2014a) Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11:325–332PubMedCrossRefGoogle Scholar
  76. Inagaki HK, Panse KM, Anderson DJ (2014b) Independent, reciprocal neuromodulatory control of sweet and bitter taste sensitivity during starvation in Drosophila. Neuron 84:806–820PubMedPubMedCentralCrossRefGoogle Scholar
  77. Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374PubMedCrossRefGoogle Scholar
  78. Jung SN, Borst A, Haag J (2011) Flight activity alters velocity tuning of fly motion-sensitive neurons. J Neurosci 31:9231–9237PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kalb J, Egelhaaf M, Kurtz R (2008) Adaptation of velocity encoding in synaptically coupled neurons in the fly visual system. J Neurosci 28:9183–9193PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kass L, Barlow RB (1984) Efferent neurotransmission of circadian rhythms in Limulus lateral eye. I. Octopamine-induced increases in retinal sensitivity. J Neurosci 4:908–917PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kaupp UB, Malbon CC, Battelle BA, Brown JE (1982) Octopamine stimulated rise of cAMP in Limulus ventral photoreceptors. Vision Res 22:1503–1506PubMedCrossRefGoogle Scholar
  82. Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354PubMedCrossRefGoogle Scholar
  83. Kim SM, Su C-Y, Wang JW (2017) Neuromodulation of innate behaviors in Drosophila. Annu Rev Neurosci 40:327–348PubMedCrossRefGoogle Scholar
  84. Kinnamon SC, Klaassen LW, Kammer AE, Claassen D (1984) Octopamine and chlordimeform enhance sensory responsiveness and production of the flight motor pattern in developing and adult moths. J Neurobiol 15:283–293PubMedCrossRefGoogle Scholar
  85. Kloppenburg P, Erber J (1995) The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera). J Comp Physiol A 176:119–129CrossRefGoogle Scholar
  86. Konings PN, Vullings HG, Geffard M, Buijis RM, Diederen JH, Jansen WF (1988) Immunocytochemical demonstration of octopamine-immunoreactive cells in the nervous system of Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 251:371–379PubMedCrossRefGoogle Scholar
  87. Krapp HG, Wicklein M (2008) Central processing of visual information in insects. Senses Compr Ref 1:131–203CrossRefGoogle Scholar
  88. Kurtz R, Beckers U, Hundsdörfer B, Egelhaaf M (2009) Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons. Euro J Neurosci 30:567–577CrossRefGoogle Scholar
  89. Land MF, Nilsson D-E (2012) Animal eyes. Oxford University Press, OxfordCrossRefGoogle Scholar
  90. Lee G, Park JH (2004) Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167:311–323PubMedPubMedCentralCrossRefGoogle Scholar
  91. Longden KD, Krapp HG (2009) State-dependent performance of optic-flow processing interneurons. J Neurophysiol 102:3606–3618PubMedCrossRefGoogle Scholar
  92. Longden KD, Krapp HG (2010) Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front Syst Neurosci 4:153PubMedPubMedCentralCrossRefGoogle Scholar
  93. Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG (2014) Nutritional state modulates the neural processing of visual motion. Curr Biol 24:890–895PubMedCrossRefGoogle Scholar
  94. Lüders J, Kurtz R (2015) Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Front Integr Neurosci 9:36PubMedPubMedCentralGoogle Scholar
  95. Ma Z, Stork T, Bergles DE, Freeman MR (2016) Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature 539:428–432PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc Roy Soc B 225:251–275CrossRefGoogle Scholar
  97. Maimon G (2011) Modulation of visual physiology by behavioral state in monkeys, mice, and flies. Curr Opin Neurobiol 21:559–564PubMedCrossRefGoogle Scholar
  98. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399PubMedCrossRefGoogle Scholar
  99. Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schiling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216PubMedCrossRefGoogle Scholar
  100. Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717PubMedCrossRefGoogle Scholar
  101. Mauss AS, Borst A (2017) Motion vision in arthropods. In: Byrne JH (ed) The Oxford handbook of invertebrate neurobiology. Oxford University Press, OxfordGoogle Scholar
  102. Meinertzhagen IA, Pyza E (1999) Neurotransmitter regulation of circadian structural changes in the fly’s visual system. Microsc Res Tech 45:96–105PubMedCrossRefGoogle Scholar
  103. Monastirioti M (1999) Biogenic amine systems in the fruit fly Drosophila melanogaster. Microsc Res Tech 45:106–121PubMedCrossRefGoogle Scholar
  104. Monastirioti M, Linn CE Jr, White K (1996) Characterization of Drosophila tyramine β-hydroxylase gene and isolation of mutant flies lacking octopamine. J Neurosci 16:3900–3911PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nässel DR (1991) Neurotransmitters and neuromodulators in the insect visual system. Prog Neurobiol 37:179–254PubMedCrossRefGoogle Scholar
  106. Nässel DR, Elekes K (1992) Aminergic neurons in the brain of blowflies and Drosophila: dopamine- and tyrosine hydroxylase-immunoreactive neurons and their relationship with putative histaminergic neurons. Cell Tissue Res 267:147–167PubMedCrossRefGoogle Scholar
  107. Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140PubMedCrossRefGoogle Scholar
  108. Nässel DR, Holmqvist MH, Hardie RC, Håkanson R, Sundler F (1988) Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica. Cell Tissue Res 253:639–646PubMedCrossRefGoogle Scholar
  109. Nathanson JA, Hunnicutt EJ (1981) N-Demethylchlordimeform: a potent partial agonist of octopamine-sensitive adenylate cyclase. Mol Pharmacol 20:68–75PubMedGoogle Scholar
  110. Neri P, Laughlin SB (2005) Global versus local adaptation in fly motion-sensitive neurons. Proc Biol Sci 272:2243–2249PubMedPubMedCentralCrossRefGoogle Scholar
  111. Nordstrom K, de Miguel IM, O’Carroll DC (2011) Rapid contrast gain reduction following motion adaptation. J Exp Biol 214:4000–4009PubMedCrossRefGoogle Scholar
  112. Orchard I, Ramirez JM, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249CrossRefGoogle Scholar
  113. Osorio D, Bacon JP (1994) A good eye for arthropod evolution. BioEssays 16:419–424PubMedCrossRefGoogle Scholar
  114. Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497:928–958PubMedGoogle Scholar
  115. Raghu SV, Joesch M, Borst A (2007) Synaptic organization of lobula plate tangential cells in Drosophila: γ-aminobutyric acid receptors and chemical release sites. J Comp Neurol 502:598–610PubMedCrossRefGoogle Scholar
  116. Ramirez JM, Pearson KG (1991) Octopaminergic modulation of interneurons in the flight system of the locust. J Neurophysiol 66:1522–1537PubMedCrossRefGoogle Scholar
  117. Ramirez JM, Pearson KG (1993) Alteration of bursting properties in interneurons during locust flight. J Neurophysiol 70:2148–2160PubMedCrossRefGoogle Scholar
  118. Rezával C, Nojima T, Neville MC, Lin AC, Goodwin SF (2014) Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Curr Biol 24:725–730PubMedCrossRefGoogle Scholar
  119. Rien D, Kern R, Kurtz R (2012) Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons. Eur J Neurosci 36:3030–3039PubMedCrossRefGoogle Scholar
  120. Rind FC, Santer RD, Wright GA (2008) Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust. J Neurophysiol 100:670–680PubMedPubMedCentralCrossRefGoogle Scholar
  121. Roeder T (1994) Biogenic amines and their receptors in insects. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 107:1–12CrossRefGoogle Scholar
  122. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477PubMedCrossRefGoogle Scholar
  123. Roeder T, Nathanson JA (1993) Characterization of insect neuronal octopamine receptors (OA3 receptors). Neurochem Res 18:921–925PubMedCrossRefGoogle Scholar
  124. Roeder T, Seifert M, Kähler C, Gewecke M (2003) Tyramine and octopamine: antagonistic modulators of behavior and metabolism. Arch Insect Biochem Physiol 54:1–13PubMedCrossRefGoogle Scholar
  125. Saraswati S, Fox LE, Soll DR, Wu C-F (2004) Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J Neurobiol 58:425–441PubMedCrossRefGoogle Scholar
  126. Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF (2010) Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 103:1646–1657PubMedCrossRefGoogle Scholar
  127. Scott EK, Raabe T, Luo L (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J Comp Neurol 454:470–481PubMedCrossRefGoogle Scholar
  128. Serbe E, Meier M, Leonhardt A, Borst A (2016) Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 89:829–841PubMedCrossRefGoogle Scholar
  129. Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA (2014) Candidate neural substrates for off-edge motion detection in Drosophila. Curr Biol 24:1062–1070PubMedPubMedCentralCrossRefGoogle Scholar
  130. Siegelbaum SA, Tsien RW (1983) Modulation of gated ion channels as a mode of transmitter action. Trends Neurosci 6:307–313CrossRefGoogle Scholar
  131. Silies M, Gohl DM, Clandinin TR (2014) Motion-detecting circuits in flies: coming into view. Annu Rev Neurosci 37:307–327PubMedCrossRefGoogle Scholar
  132. Sinakevitch I, Strausfeld NJ (2006) Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol 494:460–475PubMedCrossRefGoogle Scholar
  133. Sombati S, Hoyle G (1984) Generation of specific behaviors in a locust by local release into neuropil of the natural neuromodulator octopamine. J Neurobiol 15:481–506PubMedCrossRefGoogle Scholar
  134. Stafford JW, Lynd KM, Jung AY, Gordon MD (2012) Integration of taste and calorie sensing in Drosophila. J Neurosci 32:14767–14774PubMedPubMedCentralCrossRefGoogle Scholar
  135. Stern M, Thompson KSJ, Zhou P, Watson DG, Midgley JM, Gewecke M, Bacon JP (1995) Octopaminergic neurons in the locust brain: morphological, biochemical and electrophysiological characterisation of potential modulators of the visual system. J Comp Physiol A 177:611–625CrossRefGoogle Scholar
  136. Stewart FJ, Baker DA, Webb B (2010) A model of visual–olfactory integration for odour localisation in free-flying fruit flies. J Exp Biol 213:1886–1900PubMedCrossRefGoogle Scholar
  137. Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256CrossRefGoogle Scholar
  138. Strausfeld NJ, Okamura J-Y (2007) Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J Comp Neurol 500:166–188PubMedCrossRefGoogle Scholar
  139. Strother JA, Wu S-T, Rogers EM, Eliason JLM, Wong AM, Nern A, Reiser MB (2018) Behavioral state modulates the ON visual motion pathway of Drosophila. Proc Natl Acad Sci 115:E102–E111PubMedCrossRefGoogle Scholar
  140. Stuart AE (1999) From fruit flies to barnacles, minireview histamine is the neurotransmitter of arthropod photoreceptors. Neuron 22:431–433PubMedCrossRefGoogle Scholar
  141. Suver MP, Mamiya A, Dickinson MH (2012) Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Curr Biol 22:2294–2302PubMedCrossRefGoogle Scholar
  142. Takemura S-Y, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang L-A, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, Rubin GM, Scheffer LK, Meinertzhagen IA, Chklovskii DB (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tammero LF, Frye MA, Dickinson MH (2004) Spatial organization of visuomotor reflexes in Drosophila. J Exp Biol 207:113–122PubMedCrossRefGoogle Scholar
  144. van Breugel F, Suver MP, Dickinson MH (2014) Octopaminergic modulation of the visual flight speed regulator of Drosophila. J Exp Biol 217:1737–1744PubMedCrossRefGoogle Scholar
  145. van Breugel F, Riffell J, Fairhall A, Dickinson MH (2015) Mosquitoes use vision to associate odor plumes with thermal targets. Curr Biol 25:2123–2129PubMedPubMedCentralCrossRefGoogle Scholar
  146. van Breugel F, Huda A, Dickinson MH (2018) Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila. Nature 564:420–424PubMedPubMedCentralCrossRefGoogle Scholar
  147. Verlinden H, Vleugels R, Marchal E, Badisco L, Pflüger H-J, Blenau W, Broeck JV (2010) The role of octopamine in locusts and other arthropods. J Insect Physiol 56:854–867PubMedCrossRefGoogle Scholar
  148. Vinck M, Batista-Brito R, Knoblich U, Cardin JA (2015) Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:740–754PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting C-Y, O’Kane CJ, Tang S, Lee T-H, Hardie RC, Juusola M (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:925–931PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wasserman SM, Aptekar JW, Lu P, Nguyen J, Wang AL, Keleş MF, Grygoruk A, Krantz DE, Larsen C, Frye MA (2015) Olfactory neuromodulation of motion vision circuitry in Drosophila. Curr Biol 25:467–472PubMedPubMedCentralCrossRefGoogle Scholar
  151. Weckström M (1994) Voltage-activated outward currents in adult and nymphal locust photoreceptors. J Comp Physiol A 174:795–801CrossRefGoogle Scholar
  152. Wicher D (2007) Metabolic regulation and behavior: how hunger produces arousal—an insect study. Endocr Metab Immune Disord Drug Targets 7:304–310PubMedCrossRefGoogle Scholar
  153. Williams DS (1983) Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts. J Comp Physiol A 150:509–519CrossRefGoogle Scholar
  154. Wong J-MT, Malec PA, Mabrouk OS et al (2016) Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A 1446:78–90PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM (2016) Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. Elife 5:e21022PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yang Z, Yu Y, Zhang V, Tian Y, Qi W, Wang L (2015) Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc Natl Acad Sci 112:5219–5224PubMedCrossRefGoogle Scholar
  157. Yu Y, Huang R, Ye J, Zhang V, Wu C, Cheng G, Jia J, Wang L (2016) Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. Elife 5:e15693PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zhou C, Rao Y, Rao Y (2008) A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 11:1059–1067PubMedCrossRefGoogle Scholar
  159. Zhou C, Huang H, Kim SM, Lin H, Meng X, Han K-A, Chiang A-S, Wang JW, Jiao R, Rao Y (2012) Molecular genetic analysis of sexual rejection: roles of octopamine and its receptor OAMB in Drosophila courtship conditioning. J Neurosci 32:14281–14287PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Integrative, Biology and PhysiologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations