Journal of Comparative Physiology A

, Volume 204, Issue 7, pp 687–702 | Cite as

The mechanical leg response to vibration stimuli in cave crickets and implications for vibrosensory organ functions

  • Nataša Stritih Peljhan
  • Johannes Strauß
Original Paper


We investigate the influence of leg mechanics on the vibration input and function of vibrosensitive organs in the legs of the cave cricket Troglophilus neglectus, using laser Doppler vibrometry. By varying leg attachment, leg flexion, and body posture, we identify important influences on the amplitude and frequency parameters of transmitted vibrations. The legs respond best to relatively high-frequency vibration (200–2000 Hz), but in strong dependence on the leg position; the response peak shifts progressively over 500–1400 Hz towards higher frequencies following leg flexion. The response is amplified most strongly on the tibia, where specialised vibrosensory organs occur, and the response amplitude increases with the increasing frequency. Leg responses peaking at 800 and 1400 Hz closely resemble the tuning of the intermediate organ receptors in the proximal tibia of T. neglectus, which may be highly sensitive to positional change. The legs of free-standing animals with the abdomen touching the vibrating substrate show a secondary response peak below 150 Hz, induced by body vibration. Such responses may significantly increase the sensitivity of low-frequency receptors in the tibial accessory organ and the femoral chordotonal organ. The cave cricket legs appear suitable especially for detection of high-frequency vibration.


Vibration transmission Vibration reception Mechanoreception Sensory evolution Biotremology 



We thank Reinhard Lakes-Harlan (Justus-Liebig-Universität Gießen) for support, and are indebted to Daniel Svenšek (Faculty of Mathematics and Physics, University of Ljubljana) for the discussion of data in the light of resonance phenomena. We are grateful to one anonymous reviewer and to Rex Cocroft for their constructive comments that helped to improve the manuscript. We thank Danait Araia for correcting the language. NSP acknowledges the financial support from the Slovenian Research Agency (research core funding P1-0255). JS was supported by a Young Investigator Grant from the Justus-Liebig-Universität Gießen.

Compliance with ethical standards

Conflict of interest

No competing interests declared.

Ethical statement

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

359_2018_1271_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 47 KB)
359_2018_1271_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 KB)
359_2018_1271_MOESM3_ESM.docx (48 kb)
Supplementary material 3 (DOCX 47 KB)


  1. Aicher B, Markl H, Masters WM, Kirschenlohr HL (1983) Vibration transmission through the walking legs of the fiddler crab, Uca pugilator (Brachyura, Ocypodidae) as measured by laser Doppler vibrometry. J Comp Physiol 150:483–491CrossRefGoogle Scholar
  2. Autrum H, Schneider W (1948) Vergleichende Untersuchungen über den Erschütterungssinn der Insecten. Z Vergl Physiol 31:77–88CrossRefGoogle Scholar
  3. Barth FG (1972) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186CrossRefGoogle Scholar
  4. Barth FG (1998) The vibrational sense of spiders. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. springer handbook of auditory research. Fay RR, Popper AN, (series eds). Springer, Berlin, pp 228–278Google Scholar
  5. Barth (2002) Spider senses—technical perfection and biology. Zoology 105:271–285CrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  7. Cocroft RB, Tieu TD, Hoy RR, Miles RN (2000) Directionality in the mechanical response to substrate vibration in the treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol 186:695–705CrossRefGoogle Scholar
  8. Cocroft RB, Gogala M, Hill P, Wessel A (2014) Studying vibrational communication. Springer, BerlinCrossRefGoogle Scholar
  9. Čokl A, Kalmring K, Rössler W (1995) Physiology of atympanate tibial organs in forelegs and midlegs of the cave-living Ensifera, Troglophilus neglectus (Rhaphidophoridae, Gryllacridoidea). J Exp Zool 273:376–388CrossRefGoogle Scholar
  10. Čokl A, Zorović M, Žunič Kosi A, Stritih N, Virant-Doberlet M (2014) Communication through plants in a narrow frequency window. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Heidelberg, pp 171–189Google Scholar
  11. Čokl A, Laumann RA, Stritih N (2017) Substrate-borne vibratory communication. In: Čokl A, Borges M (eds) Stink bugs: biorational control based on communication processes, 1st edn. CRC Press, Boca Raton, pp 125–164CrossRefGoogle Scholar
  12. Dambach M (1972) Der Vibrationssinn der Grillen. I. Schwellenmessungen an Beinen frei beweglicher Tiere. J Comp Physiol A 79:281–304CrossRefGoogle Scholar
  13. Devetak D, Pabst MA, Delakorda SL (2004) Leg chordotonal organs and campaniform sensilla in Chrysoperla Steinmann 1964 (Neuroptera): structure and function. Denisia 13:163–171Google Scholar
  14. Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44CrossRefGoogle Scholar
  15. Eberhard M, Lang D, Metscher B, Pass G, Picker M, Wolf H (2010) Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication. Arthrop Struct Dev 39:230–241CrossRefGoogle Scholar
  16. Elias DO, Mason AC (2014) The role of wave and substrate heterogeneity in vibratory communication: practical issues in studying the effect of vibratory environments in communication. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 215–247Google Scholar
  17. Endler JA, Basolo A (1998) Sensory ecology, receiver biases and sexual selection. Trends Ecol Evol 13:415–420CrossRefPubMedGoogle Scholar
  18. Erko M, Younes-Metzler O, Rack A, Zaslansky P, Young SL, Milliron G, Chyasnavichyus M, Barth FG, Fratzl P, Tsukruk V, Zlotnikov I, Politi Y (2015) Micro- and nano-structural details of a spider’s filter for substrate vibrations: relevance for low-frequency signal transmission. J R Soc Interface 12:20141111CrossRefPubMedPubMedCentralGoogle Scholar
  19. Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1–228CrossRefGoogle Scholar
  20. Field LH, Pflüger H-J (1989) The femoral chordotonal organ: a bifunctional orthopteran (Locusta migratoria) sense organ? Comp Biochem Physiol A 93:729–743CrossRefGoogle Scholar
  21. Finck A (1981) The lyriform organ of the orb-weaving spider Araneous sericatus: vibrational sensitivity is altered by bending the leg. J Acoust Soc Am 70:231–233CrossRefGoogle Scholar
  22. Friedel T (1999) The vibrational startle response of the desert locust Schistocerca gregaria. J Exp Biol 202:2151–2159Google Scholar
  23. Greenfield MD (2002) Signalers and receivers. Mechanisms and evolution of arthropod communication. Oxford University Press, OxfordGoogle Scholar
  24. Hill PSM (2008) Vibrational communication in animals. Harvard University Press, LondonGoogle Scholar
  25. Hrncir M, Barth FG (2014) Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 349–374Google Scholar
  26. Hrncir M, Barth FG, Tautz J (2006) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulos S, Claridge MF (eds) Insect sounds and communication. CRC Press, Boca Raton, pp 421–436Google Scholar
  27. Jeram S, Rössler W, Čokl A, Kalmring K (1995) Structure of atympanate tibial organs in legs of the cave-living Ensifera, Troglophilus neglectus (Gryllacridoidea, Raphidophoridae). J Morphol 223:109–118CrossRefPubMedGoogle Scholar
  28. Kalmring K, Kühne R (1983) The processing of acoustic and vibrational information in insects. In: Lewis B (ed) Bioacoustics. A comparative approach. Academic Press, London, pp 261–282Google Scholar
  29. Kalmring K, Rössler W, Unrast C (1994) Complex tibial organs in the fore-,mid- and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of physiology of the organs. J Exp Zool 270:155–161CrossRefGoogle Scholar
  30. Kalmring K, Hoffmann E, Jatho M, Sickmann T, Grossbach M (1996) The auditory-vibratory sensory system of the bushcricket Polysarcus denticauda (Phaneropterinae, Tettigoniidae). II. Physiology of receptor cells. J Exp Zool 276:315–329CrossRefGoogle Scholar
  31. Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318CrossRefGoogle Scholar
  32. Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: response characteristics of single receptor units. J Insect Physiol 28:155–163CrossRefGoogle Scholar
  33. Lakes-Harlan R, Strauß J (2014) Functional morphology and evolutionary diversity of vibration receptors in insects. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 277–302Google Scholar
  34. Lin Y, Rössler W, Kalmring K (1994) Complex tibial organs in the fore-, mid- and hindlegs of the bushcrickets Gampsocleis gratiosa (Tettigoniidae): comparison of the morphology of the organs. J Morphol 221:191–198CrossRefPubMedGoogle Scholar
  35. Lin Y, Rössler W, Kalmring K (1995) Morphology of the tibial organs of Acrididae: comparison of subgenual and distal organs in fore-, mid-, and hindlegs of Schistocerca gregaria (Acrididae, Catantopidae) and Locusta migratoria (Acrididae, Oedipodinae). J Morphol 226:351–360CrossRefPubMedGoogle Scholar
  36. Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 332–353CrossRefGoogle Scholar
  37. McConney ME, Schaber CF, Julian MD, Barth FG, Tsukruk VV (2007) Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys). J R Soc Interface 4:1135–1114CrossRefPubMedPubMedCentralGoogle Scholar
  38. Miles RN (2016) An analytical model for the propagation of bending waves on a plant stem due to vibration of an attached insect. Heliyon 2(3):e00086CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mortimer B (2017) Biotremology: do physical constraints limit the propagation of vibrational information? Anim Behav 130:165–174CrossRefGoogle Scholar
  40. Novak T, Kuštor V (1983) On Troglophilus (Rhaphidophoridae, Saltatoria) from north Slovenia (YU). Mém Biospéol 10:183–189Google Scholar
  41. Pehani Š, Virant-Doberlet M, Jeram S (1997) The life cycle of the cave cricket Troglophilus neglectus Krauss with a note on T. cavicola Kollar (Orthoptera: Rhaphidophoridae). Entomologist 116:224–238Google Scholar
  42. Polajnar J, Svenšek D, Čokl A (2012) Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interface 9(73):1898–1907CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pollack GS, Imaizumi K (1999) Neural analysis of sound frequency in insects. BioEssays 21:295–303CrossRefGoogle Scholar
  44. Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84Google Scholar
  45. Römer H (1998) The sensory ecology of acoustic communication in insects. In: Hoy RR, Popper AN, Fay RR (eds) Comparative hearing: insects. Springer handbook of auditory research. Fay RR, Popper AN (series eds). Springer, New York, pp 63–96Google Scholar
  46. Rössler W (1992) Functional morphology and development of tibial organs in the legs I, II and III of the bushcricket Ephippiger ephippiger (Insecta, Ensifera). Zoomorphology 112:181–188CrossRefGoogle Scholar
  47. Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594PubMedGoogle Scholar
  48. Schnorbus H (1971) Die subgenualen Sinnesorgane von Periplaneta americana: histologie und Vibrationsschwellen. Z Vergl Physiol 71:14–48Google Scholar
  49. Schumacher R (1979) Zur funktionellen morphologie des auditorischen systems der Laubheuschrecken. Entomol Gen 5:321–356Google Scholar
  50. Shaw SR (1994) Re-evaluation of the absolute threshold and response mode of the most sensitive known “vibration” detector, the cockroach’s subgenual organ: a cochlea-like displacement threshold and a direct response to sound. J Neurobiol 25:1167–1185CrossRefPubMedGoogle Scholar
  51. Stein W, Sauer AE (1999) Physiology of vibration-sensitive afferents in the femoral chordotonal organ of the stick insect. J Comp Physiol A 184:253–263CrossRefGoogle Scholar
  52. Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptors of the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Cell Tissue Res 294:377–386Google Scholar
  53. Strauß J (2017) The scolopidial accessory organs and Nebenorgans in orthopteroid insects: comparative neuroanatomy, mechansosensory function, and evolutionary origin. Arthropod Struct Dev 46:765–776CrossRefPubMedGoogle Scholar
  54. Strauß J, Lakes-Harlan R (2013) Sensory neuroanatomy of stick insects highlights the evolutionary diversity of the orthopteroid subgenual organ complex. J Comp Neurol 521:3791–3803CrossRefPubMedGoogle Scholar
  55. Strauß J, Lakes-Harlan R (2017) Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ. Comp Biochem Physiol A 203:100–108CrossRefGoogle Scholar
  56. Strauß J, Stritih N (2016) The accessory organ, a scolopidial sensory organ, in the cave cricket Troglophilus neglectus (Orthoptera: Ensifera: Rhaphidophoridae). Acta Zool Stockh 97:187–195CrossRefGoogle Scholar
  57. Strauß J, Stritih N, Lakes-Harlan R (2014) The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution. Roy Soc Open Sci 1:140240CrossRefGoogle Scholar
  58. Strauß J, Riesterer AS, Lakes-Harlan R (2016) How many mechanosensory organs in the bushcricket leg? Neuroanatomy of the scolopidial accessory organ in Tettigoniidae (Insecta: Orthoptera). Arthropod Struct Dev 41:31–41Google Scholar
  59. Strauß J, Lomas K, Field LH (2017) The complex tibial organ of the New Zealandground weta: sensory adaptations for vibrational signal detection. Sci Rep 7:2031CrossRefPubMedPubMedCentralGoogle Scholar
  60. Stritih N (2009) Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, Rhaphidophoridae). J Comp Neurol 516:519–532CrossRefPubMedGoogle Scholar
  61. Stritih N, Čokl A (2012) Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. PloS One 7(10):e47646CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stritih N, Čokl A (2014) The role of frequency in vibrational communication of Orthoptera. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying vibrational communication. Springer, Berlin, pp 375–393Google Scholar
  63. Stritih N, Stumpner A (2009) Vibratory interneurons of the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68CrossRefPubMedGoogle Scholar
  64. Stumpner A, Nowotny M (2014) Neural processing in the bushcricket auditory pathway. In: Hedwig B (ed) Insect hearing and acoustic communication. Springer, Berlin, pp 143–166CrossRefGoogle Scholar
  65. Windmill JFC, Jackson JC (2016) Mechanical specializations of insect ears. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect Hearing, 1st edn, Springer Handbook of Auditory Research (Fay RR, Popper AN, series eds). Springer International Publishing, Switzerland, pp 125–157Google Scholar
  66. Yack J (2016) Vibrational signaling. In: Pollack GS, Mason AC, Popper AN, Fay RR (eds) Insect hearing, 1st edn, springer handbook of auditory research (Fay RR, Popper AN, series (eds)). Springer International Publishing, Switzerland, pp 99–123Google Scholar
  67. Young SL, Chyasnavichyus M, Erko M, Barth FG, Fratzl P, Zlotnikov I, Politi Y, Tsukruk VV (2014) A spider’s biological vibration filter: Micromechanical characteristics of a biomaterial surface. Acta Biomater 10:4832–4842CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Organisms and Ecosystems ResearchNational Institute of BiologyLjubljanaSlovenia
  2. 2.AG Integrative Sensory Physiology, Institute for Animal PhysiologyJustus-Liebig-Universität Gießen35392 GießenGermany

Personalised recommendations