Abstract
Odontocete marine mammals explore the environment by rapidly producing echolocation signals and receiving the corresponding echoes, which likewise return at very rapid rates. Thus, it is important that the auditory system has a high temporal resolution to effectively process and extract relevant information from click echoes. This study used auditory evoked potential methods to investigate auditory temporal resolution of individuals from four different odontocete species, including a spinner dolphin (Stenella longirostris), pygmy killer whale (Feresa attenuata), long-finned pilot whale (Globicephala melas), and Blainville’s beaked whale (Mesoplodon densirostris). Each individual had previously stranded and was undergoing rehabilitation. Auditory Brainstem Responses (ABRs) were elicited via acoustic stimuli consisting of a train of broadband tone pulses presented at rates between 300 and 2000 Hz. Similar to other studied species, modulation rate transfer functions (MRTFs) of the studied individuals followed the shape of a low-pass filter, with the ability to process acoustic stimuli at presentation rates up to and exceeding 1250 Hz. Auditory integration times estimated from the bandwidths of the MRTFs ranged between 250 and 333 µs. The results support the hypothesis that high temporal resolution is conserved throughout the diverse range of odontocete species.
Similar content being viewed by others
Change history
29 April 2021
A Correction to this paper has been published: https://doi.org/10.1007/s00359-021-01488-0
Abbreviations
- ABR:
-
Auditory brainstem response
- EFR:
-
Envelope following response
- ERB:
-
Equivalent rectangular bandwidth
- ERD:
-
Equivalent rectangular duration
- FFT:
-
Fast Fourier transform
- MRTF:
-
Modulation rate transfer function
- RFR:
-
Rate following response
- SAM:
-
Sinusoidally amplitude modulated
References
Amano M (2009) Finless porpoise, Neophocaena phocaenoides. In: Perrin W, B W, JGM T (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 437–439
Au WWL (1990) Target detection in noise by echolocating dolphins. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans: laboratory and field evidence. Springer US, Boston, pp 203–216
Au WWL (1993) The sonar of dolphins. Springer, New York
Au WWL, Benoit-Bird KJ (2003) Automatic gain control in the echolocation system of dolphins. Nature 423:861–863. https://doi.org/10.1038/nature01727
Au WW, Moore PW, Pawloski DA (1988) Detection of complex echoes in noise by an echolocating dolphin. J Acoust Soc Am 83:662–668. https://doi.org/10.1121/1.396161
Au WWL, Pawloski JL, Nachtigall PE, Blonz M, Gisner RC (1995) Echolocation signal and transmission beam pattern of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 98:51–59
Baird R (2009) False killer whale, Pseudorca crassidens. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 405–406
Bjørge A, Tolley KA (2009) Harbor porpoise, Phocoena phocoena. In: Perrin WF, Würsig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, pp 530–533
Bullock TH, Ginnel AD, Ikezono E, Kameda K, Katsuki Y, Nomoto M, Sato O, Suga N, Yanagisawa K (1968) Electrophysiological studies of central auditory mechanisms in cetaceans. J Comp Physiol A 59:117–156
Chen I, Watson A, Chou LS (2011) Insights from life history traits of Risso’s dolphins (Grampus griseus) in Taiwanese waters: shorter body length characterizes northwest Pacific population. Mar Mammal Sci 27:43–64. https://doi.org/10.1111/j.1748-7692.2010.00429.x
Cook MLH, Varela RA, Goldstein JD, McCulloch SD, Bossart GD, Finneran JJ, Houser D, Mann DA (2006) Beaked whale auditory evoked potential hearing measurements. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 192:489–495. https://doi.org/10.1007/s00359-005-0086-1
Dean KF, Sheets LP, Crofton KM, Reiter LW (1990) The effect of age and experience on inhibition of the acoustic startle response by gaps in background noise. Psychobiology 18:89–95. https://doi.org/10.3758/BF03327220
Dolphin WF, Au WWL, Nachtigall PE, Pawloski J (1995) Modulation rate transfer functions to low-frequency carriers in three species of cetaceans. J Comp Physiol A 177:235–245. https://doi.org/10.1007/BF00225102
Donahue M, Perryman W (2009) Pygmy killer whale, Feresa attenuata. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 938–939
Dubrovsky NA (1990) On the two auditory subsystems in dolphins. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans: laboratory and field evidence. Springer US, Boston, MA, pp 233–254
Eddins DA (1993) Amplitude modulation detection of narrow-band noise: effects of absolute bandwidth and frequency region. J Acoust Soc Am 93:470–479. https://doi.org/10.1121/1.405627
Finneran JJ, London HR, Houser DS (2007) Modulation rate transfer functions in bottlenose dolphins (Tursiops truncatus) with normal hearing and high-frequency hearing loss. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 193:835–843. https://doi.org/10.1007/s00359-007-0238-6
Finneran JJ, Houser DS, Mase-Guthrie B, Ewing RY, Lingenfelser RG (2009) Auditory evoked potentials in a stranded Gervais’ beaked whale (Mesoplodon europaeus). J Acoust Soc Am 126:484–490. https://doi.org/10.1121/1.3133241
Ford J (2009) Killer whale, Orcinus orca. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 650–657
Friedman JT, Peiffer AM, Clark MG, Benasich AA, Fitch RH (2004) Age and experience-related improvements in gap detection in the rat. Dev Brain Res 152:83–91. https://doi.org/10.1016/j.devbrainres.2004.06.007
Greenhow DR, Brodsky MC, Lingenfelser RG, Mann DA (2014) Hearing threshold measurements of five stranded short-finned pilot whales (Globicephala macrorhynchus). J Acoust Soc Am 135:531–536. https://doi.org/10.1121/1.4829662
Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer New York, New York, NY, pp 691–715
Houser DS, Gomez-Rubio A, Finneran JJ (2008) Evoked potential audiometry of 13 Pacific bottlenose dolphins (Tursiops truncatus gilli). Mar Mammal Sci 24:28–41. https://doi.org/10.1111/j.1748-7692.2007.00148.x
Johnson CS (1968) Relation between absolute threshold and duration of tone pulses in the bottlenosed porpoise. J Acoust Soc Am 43:757–763. https://doi.org/10.1121/1.1910893
Kamminga C (1988) Echolocation signal types of odontocetes. In: Nachtigall PE, Moore PWB (eds) Animal sonar: processes and performance. Plenum, New York, NY, pp 9–22
Kinze C (2009) White-beaked dolphin, Lagenorhynchs albirostris. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 1255–1258
Klishin VO, Popov VV, Supin AY (2000) Hearing capabilities of a beluga whale, Delphinapterus leucas. Aquat Mamm 26:212–228
Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21:179–192. https://doi.org/10.1016/0378-5955(86)90038-9
Lammers MO, Au WWL, Aubauer R, Nachtigall PE (2004) A comparative analysis of the pulsed emissions of free-ranging Hawaiian spinner dolphins. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 414–419
Lemonds DW, Kloepper LN, Nachtigall PE, Au WWL, Vlachos SA, Branstetter BK (2011) A re-evaluation of auditory filter shape in delphinid odontocetes: evidence of constant-bandwidth filters. J Acoust Soc Am 130:3107–3114. https://doi.org/10.1121/1.3644912
Lemonds DW, Au WWL, Vlachos SA, Nachtigall PE (2012) High-frequency auditory filter shape for the Atlantic bottlenose dolphin. J Acoust Soc Am 132:1222–1228. https://doi.org/10.1121/1.4731212
Linnenschmidt M, Beedholm K, Wahlberg M, Højer-Kristensen J, Nachtigall PE (2012) Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system. Proc Biol Sci 279:2237–2245. https://doi.org/10.1098/rspb.2011.2465
Linnenschmidt M, Wahlberg M, Damsgaard Hansen J (2013) The modulation rate transfer function of a harbour porpoise (Phocoena phocoena). J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 199:115–126. https://doi.org/10.1007/s00359-012-0772-8
Madsen PT, Kerr I, Payne R (2004) Echolocation clicks of two free-ranging, oceanic delphinids with different food preferences: false killer whales Pseudorca crassidens and Risso’s dolphins Grampus griseus. J Exp Biol 207:1811–1823. https://doi.org/10.1242/jeb.00966
Mann D et al (2010) Hearing loss in stranded odontocete dolphins and whales. PLoS One 5:1–5. https://doi.org/10.1371/journal.pone.0013824
Møhl B, Andersen S (1973) Echolocation: high-frequency component in the click of the harbour porpoise (Phocoena ph. L.). J Acoust Soc Am 54:1368–1372. https://doi.org/10.1121/1.1914435
Møhl B, Au WWL, Pawloski J, Nachtigall PE (1999) Dolphin hearing: relative sensitivity as a function of point of application of a contact sound source in the jaw and head region. J Acoust Soc Am 105:3421–3424
Montie EW, Manire CA, Mann DA (2011) Live CT imaging of sound reception anatomy and hearing measurements in the pygmy killer whale, Feresa attenuata. J Exp Biol 214:945–955. https://doi.org/10.1242/jeb.051599 doi
Mooney TA, Nachtigall PE, Yuen MML (2006) Temporal resolution of the Risso’s dolphin, Grampus griseus, auditory system. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 192:373–380. https://doi.org/10.1007/s00359-005-0075-4
Mooney TA, Nachtigall PE, Castellote M, Taylor KA, Pacini AF, Esteban JA (2008) Hearing pathways and directional sensitivity of the beluga whale, Delphinapterus leucas. J Exp Mar Bio Ecol 362:108–116. https://doi.org/10.1016/j.jembe.2008.06.004
Mooney TA, Nachtigall PE, Taylor KA, Rasmussen MH, Miller LA (2009) Auditory temporal resolution of a wild white-beaked dolphin (Lagenorhynchus albirostris). J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 195:375–384. https://doi.org/10.1007/s00359-009-0415-x
Mooney TA, Li S, Ketten DR, Wang K, Wang D (2011) Auditory temporal resolution and evoked responses to pulsed sounds for the Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis). J Comp Physiol A Neuroethol Sensory. Neural Behav Physiol 197:1149–1158. https://doi.org/10.1007/s00359-011-0677-y
Mooney TA, Li S, Ketten DR, Wang K, Wang D (2014) Hearing pathways in the Yangtze finless porpoise, Neophocaena asiaeorientalis asiaeorientalis. J Exp Biol 217:444–452. https://doi.org/10.1242/jeb.093773
Mooney TA, Yang W-C, Yu HY, Ketten DR, Jen I-F (2015) Hearing abilities and sound reception of broadband sounds in an adult Risso’s dolphin (Grampus griseus). J Comp Physiol A Neuroethol Sensory. Neural Behav Physiol 201:751–761. https://doi.org/10.1007/s00359-015-1011-x
Moore PW, Hall RW, Friedl WA, Nachtigall PE (1984) The critical interval in dolphin echolocation: what is it? J Acoust Soc Am 76:314–317. https://doi.org/10.1121/1.391016 doi
Moore PWB, Pawloski DA, Dankiewicz LA (1995) Interaural time and intensity difference thresholds in the bottlenose dolphin (Tursiops truncatus). In: Kastelein RA, Thomas JA, Nachtigall PE (eds) Sensory systems of aquatic mammals. De Spil, Woerden, pp 11–23
Mulsow J, Reichmuth CJ (2007) Electrophysiological assessment of temporal resolution in pinnipeds. Aquat Mamm 33:122–131. https://doi.org/10.1578/AM.33.1.2007.122
Nachtigall PE, Yuen MML, Mooney TA, Taylor KA (2005) Hearing measurements from a stranded infant Risso’s dolphin, Grampus griseus. J Exp Biol 208:4181–4188. https://doi.org/10.1242/jeb.01876
Nachtigall PE, Mooney TA, Taylor KA, Yuen MML (2007) Hearing and auditory evoked potential methods applied to odontocete cetaceans. Aquat Mamm 33:6–13. https://doi.org/10.1578/AM.33.1.2007.6
Nachtigall PE, Mooney TA, Taylor KA, Miller LA, Rasmussen MH, Akamatsu T, Teilmann J, Linnenschmidt M, Vikingsson GA (2008) Shipboard measurements of the hearing of the white-beaked dolphin Lagenorhynchus albirostris. J Exp Biol 211:642–647. https://doi.org/10.1242/jeb.014118
National Marine Fisheries Service, U.S. Department of Commerce (2016) Marine Mammal Health and Stranding Response Database [2016_09_20_beakedwhaledata.xlsx]. Retrieved from http://www.nmfs.noaa.gov/pr/health/db_public.html
O’corry-Crowe G (2009) Beluga whale, Delphinapterus leucas. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 108–112
Olson P (2009) Pilot whales, Globicephala melas and G. macrorhynchus. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 847–852
Pacini AF, Nachtigall PE, Kloepper LN, Linnenschmidt M, Sogorb A, Matias S (2010) Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials. J Exp Biol 213:3138–3143. https://doi.org/10.1242/jeb.044636
Pacini AF, Nachtigall PE, Quintos CT, Schofield TD, Look DA, Levine GA, Turner JP (2011) Audiogram of a stranded Blainville’s beaked whale (Mesoplodon densirostris) measured using auditory evoked potentials. J Exp Biol 214:2409–2415. https://doi.org/10.1242/jeb.054338
Pacini AF, Nachtigall PE, Smith AB, Suarez LJA, Magno C, Laule GE, Aragones LV, Braun R (2016) Evidence of hearing loss due to dynamite fishing in two species of odontocetes. 10043:10043. https://doi.org/10.1121/2.0000393
Perrin WF (2009) Spinner dolphin, Stenella longirostris. In: Perrin WF, Wursig B, Thewissen JGM (eds) Encyclopedia of marine mammals. Academic Press, pp 1100–1103
Popov V, Supin AY (1988) Diagram of auditory directionality in the dolphin, Tursiops truncatus L. Dokl Biol Sci 300:232–236
Popov V, Supin A (1990) Electrophysiological studies of hearing in some cetaceans and a manatee. In: Thomas JA, Kastelein RA (eds) Sensory abilities of cetaceans: laboratory and field evidence. Springer US, Boston, pp 405–415
Popov VV, Supin AY (1991) Interaural intensity and latency difference in the dolphin’s auditory system. Neurosci Lett 133:295–297. https://doi.org/10.1016/0304-3940(91)90592-H
Popov VV, Supin AY (1998) Auditory evoked responses to rhythmic sound pulses in dolphins. J Comp Physiol—A Sensory Neural Behav Physiol 183:519–524. https://doi.org/10.1007/s003590050277
Popov VV, Supin AY (2009) Comparison of directional selectivity of hearing in a beluga whale and a bottlenose dolphin. J Acoust Soc Am 126:1581. https://doi.org/10.1121/1.3177273
Popov VV, Supin AY, Klishin VO (1992) Electrophysiological study of sound conduction in dolphins. In: Thomas JA, Kastelein RA, Supin AY (eds) Marine mammal sensory systems. Springer US, Boston, MA, pp 269–276
Popov VV, Supin AY, Wang D, Wang K, Xiao J, Li S (2005) Evoked-potential audiogram of the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis (L). J Acoust Soc Am 117:2728–2731. https://doi.org/10.1121/1.1880712
Popov VV, Supin AY, Wang D, Wang K (2006a) Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena and Neophocaena phocaenoides (Cetacea, Phocoenidae). J Acoust Soc Am 119:3173–3180. https://doi.org/10.1121/1.2184290
Popov VV, Supin AY, Klishin VO, Bulgakova TN (2006b) Monaural and binaural hearing directivity in the bottlenose dolphin: Evoked-potential study. J Acoust Soc Am 119:636–644. https://doi.org/10.1121/1.2141093
Popov VV, Sysueva EV, Nechaev DI, Lemazina AA, Supin AY (2016) Auditory sensitivity to local stimulation of the head surface in a beluga whale (Delphinapterus leucas). J Acoust Soc Am 140:1218–1226. https://doi.org/10.1121/1.4961014
Rees A, Green GGR, Kay RH (1986) Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man. Hear Res 23:123–133. https://doi.org/10.1016/0378-5955(86)90009-2
Ridgway SH, Carder D, Finneran JJ, Keogh M, Kamolnick T, Todd M, Goldblatt A (2006) Dolphin continuous auditory vigilance for five days. J Exp Biol 209:3621–3628. https://doi.org/10.1242/jeb.02405
Schlundt CE, Dear RL, Houser DS, Bowles AE, Reidarson T, Finneran JJ (2011) Auditory evoked potentials in two short-finned pilot whales (Globicephala macrorhynchus). J Acoust Soc Am 129:1111–1116. https://doi.org/10.1121/1.3531875
Schotten M, Au WWL, Lammers MO, Aubauer R (2004) Echolocation recordings and localization of wild spinner dolphins (Stenella longirostris) and pantropical spotted dolphins (S. attenuata) using a four hydrophone array. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 393–400
Supin AY, Popov VV (1995a) Temporal resolution in the dolphin’s auditory system revealed by double-click evoked potential study. J Acoust Soc Am 97:2586–2593. https://doi.org/10.1121/1.411913
Supin AY, Popov VV (1995b) Envelope-following response and modulation transfer function in the dolphin’s auditory system. Hear Res 92:38–46. https://doi.org/10.1016/0378-5955(95)00194-8
Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Springer US, Boston, MA
Szymanski MD, Supin AY, Bain DE, Henry KR (1998) Killer whale (Orcinus orca) auditory evoked potentials to rhythmic clicks. Mar Mammal Sci 14:676–691
Trehub SE, Henderson JL (1996) Temporal resolution in infancy and subsequent language development. J Speech Lang Hear Res 39:1315. https://doi.org/10.1044/jshr.3906.1315
Trehub SE, Schneider B, Henderson JL (1995) Gap detection in infants, children, and adults. J Acoust Soc Am 98:2532–2541. https://doi.org/10.1121/1.414396
Verfuß UK, Miller LA, Pilz PK, Schnitzler H-U (2009) Echolocation by two foraging harbour porpoises (Phocoena phocoena). J Exp Biol 212:823–834. https://doi.org/10.1242/jeb.022137
Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380. https://doi.org/10.1121/1.383531
Wahlberg M, Delgado-García L, Kristensen JH (2017) Precocious hearing in harbour porpoise neonates. J Comp Physiol A Neuroethol Sensory Neural Behav Physiol 203:121–132. https://doi.org/10.1007/s00359-017-1145-0
Walsh P (1997) Popular orca makes her last splash—Marine World’s Yaka dies after 27 years of shows. SFGate
Wells R, Scott M (2009) Common bottlenose dolphin, Tursiops truncatus. In: Perrin W, Würsig B, Thewissen J (eds) Encyclopedia of marine mammals. Elsevier/Academic Press, pp 249–255
Werner LA, Marean GC, Halpin CF, Spetner NB, Gillenwater JM (1992) Infant auditory temporal acuity: gap detection. Child Dev 63:260–272. https://doi.org/10.1111/j.1467-8624.1992.tb01625.x
Wiegrebe L, Schmidt S (1996) Temporal integration in the echolocating bat, Megaderma lyra. Hear Res 102:35–42. https://doi.org/10.1016/S0378-5955(96)00139-6
Yuen MML, Nachtigall PE, Breese M, Supin AY (2005) Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens). https://doi.org/10.1121/1.2010350
Acknowledgements
Funding for this research was provided by the Sea World and Busch Gardens Conservation Fund and the Office of Naval Research (grant no. 0014-08-1-1160 to P.E.N.). Funding for the research equipment was provided by Defense University Research Instrumentation Program (grant no. 00014-07-1-0705 to P.E.N.). The authors would like to thank the marine mammal trainers and staff at the Lisbon Zoo and Ocean Adventure, as well as the staff and volunteers at the Hawai‘i Cetacean Rehabilitation Facility for their assistance and support during this research. The authors would also like to thank Alexander Supin for his continuous assistance and thoughtful discussion. All research was conducted in compliance with University of Hawai‘i at Mānoa IACUC protocol #93-005-21 and conducted under NMFS permit #16053 to P.E.N. This is contribution no. 1709 from the Hawai‘i Institute of Marine Biology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Smith, A.B., Pacini, A.F. & Nachtigall, P.E. Modulation rate transfer functions from four species of stranded odontocete (Stenella longirostris, Feresa attenuata, Globicephala melas, and Mesoplodon densirostris). J Comp Physiol A 204, 377–389 (2018). https://doi.org/10.1007/s00359-018-1246-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00359-018-1246-4