Journal of Comparative Physiology A

, Volume 204, Issue 4, pp 369–376 | Cite as

The retinal projection to the nucleus lentiformis mesencephali in zebra finch (Taeniopygia guttata) and Anna’s hummingbird (Calypte anna)

  • Cristian Gutierrez-IbanezEmail author
  • Andrea H. Gaede
  • Max. R. Dannish
  • Douglas L. Altshuler
  • Douglas R. Wylie
Original Paper


In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. In both pigeons and chickens, retinal inputs to the nBOR arise from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM is a matter of debate. Previous work in chickens had concluded that DGCs do not project to LM, but a recent study in pigeons found that both retinal ganglion cells and DGCs project to LM. These findings leave open the question of whether there are species differences with respect to the DGC projection to LM. In the present study, we made small injections of retrograde tracer into the LM in a zebra finch and an Anna’s hummingbird. In both cases, retrogradely labeled retinal ganglion cells and DGCs were observed. These results suggest that a retinal input to the LM arising from DGCs is characteristic of most, if not all, birds.


Displaced ganglion cells Optic flow Optokinetic Accessory optic system Nucleus of the basal optic root 



Displaced ganglion cell


Ganglion cell layer


Lateral geniculate nucleus, pars ventralis


Tectal grey


Inner nuclear layer


Inner plexiform layer


Nucleus lentiformis mesencephali pars medialis/lateralis


Nucleus of the basal optic root


Nucleus rotundus


Outer nuclear layer


Outer plexiform layer


Retinal ganglion cell


Optic tectum


Optic tract



We would like to thank Melissa Armstrong Rebecca Long for help with this study.

Author contributions

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: CG-I, AHG, DLA, DRW. Acquisition of data CG-I, AHG, MRD, DRW. Analysis and interpretation of data: CG-I, AHG, MRD, DLA, DRW. Drafting of the article: CG-I. Critical revision of the article for important intellectual content: CG-I, AHG, DLA, DRW. Obtained funding: DLA, DRW. Study supervision: DLA, DRW.


This research was supported by funding to D.R.W. and D.L.A. from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

Ethical approval

All experimental procedures were approved by the University of British Columbia Animal Care Committee in accordance with the guidelines set out by the Canadian Council on Animal Care.


  1. Bellintani-Guardia B, Ott M (2002) Displaced retinal ganglion cells project to the accessory optic system in the chameleon (Chamaeleo calyptratus). Exp Brain Res 145:56–63. CrossRefPubMedGoogle Scholar
  2. Bodnarenko SR, Rojas X, McKenna OC (1988) Spatial organization of the retinal projection to the avian lentiform nucleus of the mesencephalon. J Comp Neurol 269:431–447. CrossRefPubMedGoogle Scholar
  3. Brecha N, Karten HJ, Hunt SP (1980) Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J Comp Neurol 189:615–670. CrossRefPubMedGoogle Scholar
  4. Crowder NA, Dawson MRW, Wylie DRW (2003) Temporal frequency and velocity-like tuning in the pigeon accessory optic system. J Neurophysiol 90:1829–1841. CrossRefPubMedGoogle Scholar
  5. Crowder NA, Dickson CT, Wylie DRW (2004) Telencephalic input to the pretectum of pigeons: an electrophysiological and pharmacological inactivation study. J Neurophysiol 91:274–285. CrossRefPubMedGoogle Scholar
  6. Dhande OS, Huberman AD (2014) Retinal ganglion cell maps in the brain: implications for visual processing. Curr Opin Neurobiol 24:133–142. CrossRefPubMedGoogle Scholar
  7. Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL, Berson DM, Huberman AD (2013) Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci 33:17797–17813. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ehrlich D, Stuchbery J, Zappia J (1989) Organisation of the hyperstriatal projection to the ventral lateral geniculate nucleus in the chick (Gallus gallus). Neurosci Lett 104:1–6. CrossRefPubMedGoogle Scholar
  9. Fite KV, Brecha N, Karten HJ, Hunt SP (1981) Displaced ganglion cells and the accessory optic system of pigeon. J Comp Neurol 195:279–288. CrossRefPubMedGoogle Scholar
  10. Gaede AH, Goller B, Lam JP, Wylie DR, Altshuler DL (2017) Neurons responsive to global visual motion have unique tuning properties in hummingbirds. Curr Biol 27:279–285. CrossRefPubMedGoogle Scholar
  11. Gamlin PDR (2006) The pretectum: connections and oculomotor-related roles. Prog Brain Res 151:379–405. CrossRefPubMedGoogle Scholar
  12. Gamlin PDR, Cohen DH (1988) Retinal projections to the pretectum in the pigeon (Columba livia). J Comp Neurol 269:1–17. CrossRefPubMedGoogle Scholar
  13. Gibson JJ (1954) The visual perception of objective motion and subjective movement. Psychol Rev 61:304–314CrossRefPubMedGoogle Scholar
  14. Giolli RA, Blanks RHI, Lui F (2006) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440. CrossRefPubMedGoogle Scholar
  15. Grasse K, Cynader M (1990) The accessory optic system in frontal-eyed animals. In: Leventhal A (ed) Vision and visual dysfunction. The neuronal basis of visual function, vol IV. MacMillan, New York, pp 111–139Google Scholar
  16. Hoffmann K-P, Bremmer F, Thiele A, Distler C (2002) Directional asymmetry of neurons in cortical areas MT and MST projecting to the NOT–DTN in macaques. J Neurophysiol 87:2113–2123. CrossRefPubMedGoogle Scholar
  17. Karten JH, Fite KV, Brecha N (1977) Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia). Proc Natl Acad Sci USA 74:1753–1756CrossRefPubMedPubMedCentralGoogle Scholar
  18. Miceli D, Gioanni H, Reperant J, Peyrichoux J (1979) The avian visual Wulst: I. An anatomical study of afferent and efferent pathways. II. An electrophysiological study of the functional properties of single. In: Granda A, Maxwel J (eds) Neural mechanisms of behavior of the pigeon. Plenum Press, New York, pp 223–354Google Scholar
  19. Montgomery N, Fite KV, Bengston L (1981) The accessory optic system of Rana pipiens: neuroanatomical connections and intrinsic organization. J Comp Neurol 203:595–612. CrossRefPubMedGoogle Scholar
  20. Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234:264–275. CrossRefPubMedGoogle Scholar
  21. Morgan B, Frost BJ (1981) Visual response characteristics of neurons in nucleus of basal optic root of pigeons. Exp brain Res 42:181–188CrossRefPubMedGoogle Scholar
  22. Nadal-Nicolás FM, Salinas-Navarro M, Jiménez-López M, Sobrado-Calvo P, Villegas-Pérez MP, Vidal-Sanz M, Agudo-Barriuso M (2014) Displaced retinal ganglion cells in albino and pigmented rats. Front Neuroanat 8:99. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nakayama K (1981) Differential motion hyperacuity under conditions of common image motion. Vis Res 21:1475–1482. CrossRefPubMedGoogle Scholar
  24. Pakan JMP, Graham DJ, Wylie DR (2010) Organization of visual mossy fiber projections and zebrin expression in the pigeon vestibulocerebellum. J Comp Neurol 518:175–198. CrossRefPubMedGoogle Scholar
  25. Reiner A (1981) A projection of displaced ganglion cells and giant ganglion cells to the accessory optic nuclei in turtle. Brain Res 204:403–409. CrossRefPubMedGoogle Scholar
  26. Reiner A, Brecha N, Karten HJ (1979) A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken. Neuroscience 4:1679–1688. CrossRefPubMedGoogle Scholar
  27. Rio JP, Villalobos J, Miceli D, Reperant J (1983) Efferent projections of the visual Wulst upon the nucleus of the basal optic root in the pigeon. Brain Res 271:145–151. CrossRefPubMedGoogle Scholar
  28. Simpson JI (1984) The accessory optic system. Ann Rev Neurosci 7:13–41CrossRefPubMedGoogle Scholar
  29. Waespe W, Henn V (1987) Gaze stabilization in the primate. The interaction of the vestibulo-ocular reflex, optokinetic nystagmus, and smooth pursuit. Rev Physiol Biochem Pharmacol 106:37–125CrossRefPubMedGoogle Scholar
  30. Westheimer G, McKee SP (1975) Visual acuity in the presence of retinal-image motion. J Opt Soc Am 65:847. CrossRefPubMedGoogle Scholar
  31. Winterson BJ, Brauth SE (1985) Direction-selective single units in the nucleus lentiformis mesencephali of the pigeon (Columba livia). Exp brain Res 60:215–226CrossRefPubMedGoogle Scholar
  32. Woodson W, Shimizu T, Wild JM, Schimke J, Cox K, Karten HJ (1995) Centrifugal projections upon the retina: an anterograde tracing study in the pigeon (Columba livia). J Comp Neurol 362:489–509. CrossRefPubMedGoogle Scholar
  33. Wylie DRW, Crowder NA (2000) Spatiotemporal properties of fast and slow neurons in the pretectal nucleus lentiformis mesencephali in pigeons. J Neurophysiol 84:2529–2540CrossRefPubMedGoogle Scholar
  34. Wylie DR, Frost BJ (1996) The pigeon optokinetic system—visual input in extraocular-muscle coordinates. Vis Neurosci 13:945–953CrossRefPubMedGoogle Scholar
  35. Wylie DR, Ogilvie CJ, Crowder NA, Barkley RR, Winship IR (2005) Telencephalic projections to the nucleus of the basal optic root and pretectal nucleus lentiformis mesencephali in pigeons. Vis Neurosci 22:237–247. CrossRefPubMedGoogle Scholar
  36. Wylie DR, Kolominsky J, Graham DJ, Lisney TJ, Gutierrez-Ibanez C (2014) Retinal projection to the pretectal nucleus lentiformis mesencephali in pigeons (Columba livia). J Comp Neurol 522:3928–3942. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonCanada
  2. 2.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations