Journal of Comparative Physiology A

, Volume 204, Issue 1, pp 81–92 | Cite as

Evolution of the androgen-induced male phenotype

  • Matthew J. FuxjagerEmail author
  • Meredith C. Miles
  • Barney A. Schlinger


The masculine reproductive phenotype varies significantly across vertebrates. As a result, biologists have long recognized that many of the mechanisms that support these phenotypes—particularly the androgenic system—is evolutionarily labile, and thus susceptible to the effects of selection for different traits. However, exactly how androgenic signaling systems vary in a way which results in dramatically different functional outputs, remain largely unclear. We explore this topic here by outlining four key—but non-mutually exclusive—hypotheses that propose how the mechanisms of androgenic signaling might change over time to potentiate the emergence of phenotypical variation in masculine behavior and physiology. We anchor this framework in a review of our own studies of a tropical bird called the golden-collared manakin (Manacus vitellinus), which has evolved an exaggerated acrobatic courtship display that is heavily androgen-dependent. The result is an example of how the cellular basis of androgenic action can be modified to support a unique reproductive repertoire. We end this review by highlighting a broad pathway forward to further pursue the intricate ways by which the mechanisms of hormone action evolve to support processes of adaptation and animal design.


Social behavior Endocrine system Neuromuscular Skeletal muscle Birds 



This works was supported by NSF Grants IOS-0646459 (to B.A.S.) and IOS-1655730 (to M.J.F.), as well as intramural funds from Wake Forest University (to M.J.F.).


  1. Adkins-Regan E (1987) Sexual differentiation in birds. Trends Neurosci 10:517–522CrossRefGoogle Scholar
  2. Adkins-Regan E (2005) Hormones and animal social behavior. Monographs in behavior and ecology. Princeton University Press, PrincetonGoogle Scholar
  3. Alward BA, Balthazart J, Ball GF (2013) Differential effects of global versus local testosterone on singing behavior and its underlying neural substrate. Proc Natl Acad Sci USA 110(48):19573–19578. doi: 10.1073/pnas.1311371110 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alward BA, Rouse ML, Balthazart J, Ball GF (2017) Testosterone regulates birdsong in an anatomically specific manner. Anim Behav 124:291–298CrossRefGoogle Scholar
  5. Auger CJ, Bentley GE, Auger AP, Ramamurthy M, Ball GF (2002) Expression of cAMP response element binding protein-binding protein in the song control system and hypothalamus of adult european starlings (Sturnus vulgaris). J Neuroendocrinol 14(10):805–813. doi: 10.1046/j.1365-2826.2002.00842.x PubMedCrossRefGoogle Scholar
  6. Ball GF, Balthazart J (1985) Neuroendocrine regulation of reproductive behavior in birds. In: Arnold AP, Etgen AM, Fahrbach SE, RT R (eds) Hormones, brain, and behavior. Academic Press, San Diego, pp 855–895Google Scholar
  7. Ball GF, Balthazart J (2006) Androgen metabolism and the activation of male sexual behavior: it’s more complicated than you think! Horm Behav 49(1):1–3. doi: 10.1016/j.yhbeh.2005.07.008 PubMedCrossRefGoogle Scholar
  8. Ball GF, Balthazart J (2008) Individual variation and the endocrine regulation of behavioral and physiology in birds: a cellular/molecular perspective. Philos Trans R Soc Lond Ser B: Biol Sci 363:1699–1710CrossRefGoogle Scholar
  9. Bartels ED, Ploug T, Størling J, Mandrup-Poulsen T, Nielsen LB (2014) Skeletal muscle apolipoprotein B expression reduces muscular triglyceride accumulation. Scand J Clin Lab Invest 74(4):351–357PubMedCrossRefGoogle Scholar
  10. Baum MJ (1979) Differentiation of coital behavior in mammals: a comparative analysis. Neurosci Biobehav Rev 3:265–284PubMedCrossRefGoogle Scholar
  11. Berthold AA (1849) Transplantation of the testes. Bull History Med 16:42–46Google Scholar
  12. Beyer C, Morali G, Naftolin F, Larsson K, Perezpalacios G (1976) Effect of some antiestrogens and aromatase inhibitors on androgen induced sexual behavior in castrated male rats. Horm Behav 7(3):353–363. doi: 10.1016/0018-506x(76)90040-4 PubMedCrossRefGoogle Scholar
  13. Bostwick KS, Prum RO (2003) High-speed video analysis of wing-snapping in two manakin clades (Pipridae: Aves). J Exp Biol 206:3693–3706PubMedCrossRefGoogle Scholar
  14. Bruchovsky N, Wilson JD (1968) The conversion of testosterone to 5-alpha-androstan-17-beta-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 243(8):2012–2021PubMedGoogle Scholar
  15. Chang C (2002) Androgens and androgen receptor: mechanisms, functions, and clinical applications. Springer, New YorkCrossRefGoogle Scholar
  16. Charlier TD, Ball GF, Balthazart J (2005) Inhibition of steroid receptor coactivator-1 blocks estroen and androgen action on male sexual behavior and associated brian plasticity. J Neurosci 25(4):906–913PubMedCrossRefGoogle Scholar
  17. Cheng ST, Brzostek S, Lee SR, Hollenberg AN, Balk SP (2002) Inhibition of the dihydrotestosterone-activated androgen receptor by nuclear receptor corepressor. Mol Endocrinol 16(7):1492–1501. doi: 10.1210/me.16.7.1492 PubMedCrossRefGoogle Scholar
  18. Chiver I, Schlinger BA (2017a) Sex differences in androgen activation of complex courtship behaviour. Anim Behav 124:109–117CrossRefGoogle Scholar
  19. Chiver I, Schlinger BA (2017b) Clearing up the court: sex and the endocrine basis of display-court manipulation. Anim Behav 131:115–121Google Scholar
  20. Cooke BA, Hegstrom CD, Villeneuve LS, Breedlove SM (1998) Frontiers in neuroendocrinology. 19:232–362Google Scholar
  21. Day LB, McBroom JT, Schlinger BA (2006) Testosterone increases display behaviors but does not stimulate growth of adult plumage in male golden-collared manakins (Manacus vitellinus). Horm Behav 49(2):223–232. doi: 10.1016/j.yhbeh.2005.07.006 PubMedCrossRefGoogle Scholar
  22. Day LB, Fusani L, Hernandez E, Billo TJ, Sheldon KS, Wise PM, Schlinger BA (2007) Testosterone and its effects on courtship in golden-collared manakins (Manacus vitellinus): seasonal, sex, and age differences. Horm Behav 51(1):69–76. doi: 10.1016/j.yhbeh.2006.08.006 PubMedCrossRefGoogle Scholar
  23. Day LB, Fusani L, Kim C, Schlinger BA (2011) Sexually dimorphic neural phenotypes in golden-collared manakins (Manacus vitellinus). Brain Behav Evol 77(3):206–218. doi: 10.1159/000327046 PubMedCrossRefGoogle Scholar
  24. Dial KP (1992) Activity patterns of the wing muscles of the pigeon (Columbia livia) during different modes of flight. J Exp Zool 262:357–373CrossRefGoogle Scholar
  25. Dial KP, Goslow GE, Jenkins FA (1991) The functional anatomy of the shoulder in the European starling (Sturnus vulgaris). J Morphol 207:327–344CrossRefGoogle Scholar
  26. Duncan KA, Carruth LL (2011) The song remains the same: coactivators and sex differences in the songbird brain. Front Neuroendocrinol 32(1):84–94. doi: 10.1016/j.yfrne.2010.11.001 PubMedCrossRefGoogle Scholar
  27. Elemans CPH, Spierts ILY, Muller UK, van Leeuwen JL, Goller F (2004) Superfast muscles control dove’s trill. Nature 431(7005):146–146. doi: 10.1038/431146a PubMedCrossRefGoogle Scholar
  28. Elemans CPH, Mead AF, Rome LC, Goller F (2008) Superfast muscles control song production in songbirds. PLoS One 3(7):e2581PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hasra E, Wada K, Mouritsen H, Jarvis ED (2008) Molecular mapping of the movement associated areas in the avian brain: a motor theory for vocal learning origin. PLoS One 3(3):e1768PubMedPubMedCentralCrossRefGoogle Scholar
  30. Feng NY, Katz A, Day LB, Barske J, Schlinger BA (2010) Limb muscles are androgen targets in an acrobatic tropical bird. Endocrinology 151(3):1042–1049. doi: 10.1210/en.2009-0901 PubMedCrossRefGoogle Scholar
  31. Freeman SN, Mainwaring WIP, Furr BJA (1989) A possible explanation for the peripheral selectivity of a novel non-steroidal pure antiandrogen, Casodex (ICI 176,334). Br J Cancer 60(5):664–668. doi: 10.1038/bjc.1989.336 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Furr BJA (1989) Casodex (ICI-176,334): a new, pure, peripherally-selective anti-androgen—preclinical studies. Horm Res 32:69–76. doi: 10.1159/000181315 PubMedCrossRefGoogle Scholar
  33. Furr BJA, Tucker H (1996) The preclinical development of bicalutamide: Pharmacodynamics and mechanism of action. Urology 47(1A):13–25. doi: 10.1016/s0090-4295(96)80003-3 PubMedCrossRefGoogle Scholar
  34. Fusani L, Day LB, Canoine V, Reinemann D, Hernandez E, Schlinger BA (2007) Androgen and the elaborate courtship behavior of a tropical lekking bird. Horm Behav 51(1):62–68. doi: 10.1016/j.yhbeh.2006.08.005 PubMedCrossRefGoogle Scholar
  35. Fusani L, Barske J, Day LD, Fuxjager MJ, Schlinger BA (2014a) Physiological control of elaborate male courtship: female choice for neuromuscular systems. Neurosci Biobehav Rev 46:534–546PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fusani L, Donaldson Z, London SE, Fuxjager MJ, Schlinger BA (2014b) Expression of androgen receptor in the brain of a sub-oscine bird with an elaborate courtship display. Neurosci Lett 578:61–65PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fuxjager MJ, Schlinger BA (2015) Perspectives on the evoltuion of animal dancing: a case study in manakins. Curr Opin Behav Sci 6:7–12CrossRefGoogle Scholar
  38. Fuxjager MJ, Foufopoulos J, Diaz-Uriarte R, Marler CA (2011) Functionally opposing effects of testosterone on two different types of parasite: implications for the immunocompetence handicap hypothesis. Funct Ecol 25:132–138CrossRefGoogle Scholar
  39. Fuxjager MJ, Schultz JD, Barske J, Feng NY, Fusani L, Mirzatoni A, Day LB, Hau M, Schlinger BA (2012) Spinal motor and sensory neurons are androgen targets in an acrobatic bird. Endocrinology 153(8):3780–3791PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fuxjager MJ, Longpre KM, Chew JG, Fusani L, Schlinger BA (2013) Peripheral androgen receptors sustain the acrobatics and fine motor skill of elaborate male courtship. Endocrinology 154(9):3168–3177PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fuxjager MJ, Heston JB, Schlinger BA (2014) Peripheral androgen action helps modulate vocal production in a suboscine passerine. Auk 131:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fuxjager MJ, Eaton J, Lindsay WR, Salwiczek LH, Rensel MA, Barske J, Sorenson L, Day LB, Schlinger BA (2015) Evolutionary patterns of adaptive acrobatics and physical performance predict expression profiles of androgen receptor—but not oestrogen receptor—in the forlimb musculature. Funct Ecol 29(9):1197–1208PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fuxjager MJ, Goller F, Dirkse A, Sanin GD, Garcia S (2016a) Select forelimb muscles have evolved superfast contractile speed to support acrobatic social displays. eLife 5:e13544PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fuxjager MJ, Lee J, Chan T, Bahn J, Chew J, Xiao X, Schlinger BA (2016b) Hormones, genes and athleticism: effect of androgens on the avian muscular transcriptome. Mol Endocrinol 30:254–271PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fuxjager MJ, Schuppe ER, Hoang J, Chew J, Shah M, Schlinger BA (2016c) Expression of 5α- and 5β-reductase in spinal cord and muscle of birds with different courtship repertoires. Front Zool 13:25PubMedPubMedCentralCrossRefGoogle Scholar
  46. Garamszegi LZ, Hirschenhauser K, Bokony V, Eens M, Hurtrez-Bousses S, Moller AP, Oliveira RF, Wingfield JC (2008) Latitudinal distribution, migration, and testosterone levels in birds. Am Nat 172(4):533–546. doi: 10.1086/590955 PubMedCrossRefGoogle Scholar
  47. Goodson JL (2005) The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 48(1):11–22. doi: 10.1016/j.yhbeh.2005.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Goodson JL, Evans AK, Lindberg L, Allen CD (2005) Neuro-evolutionary patterning of sociality. Proc R Soc B 272(1560):227–235. doi: 10.1098/rspb.2004.2892 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Goy RW, Phoenix CH (1972) The effects of testosterone proprionate administration before birth on the development of behavior in genetic female rhesus monkeys. In: Sawyer C, Gorski R (eds) Steroid hormones and brain function. University of California Press, BerkeleyGoogle Scholar
  50. Goymann W, Moore IT, Scheuerlein A, Hirschenhauser K, Grafen A, Wingfield JC (2004) Testosterone in tropical birds: effects of environmental and social factors. Am Nat 164(3):327–334PubMedCrossRefGoogle Scholar
  51. Goymann W, Landys MM, Wingfield JC (2007) Distinguishing seasonal androgen responses from male-male androgen responsiveness: revisiting the challenge hypothesis. Horm Behav 51(4):463–476PubMedCrossRefGoogle Scholar
  52. Grunt JA, Young WC (1952) Differential reactivity of individuals and the response of the male guinea pig to testosterone propionate. Endocrinology 51(3):237–248PubMedCrossRefGoogle Scholar
  53. Grunt JA, Young WC (1953) Consistency of sexual behavior patterns in individual male guinea pigs following castration and androgen therapy. J Comp Physiol Psychol 46(2):138–144PubMedCrossRefGoogle Scholar
  54. Guzik-Lendrum S, Heissler SM, Billington N, Takagi Y, Yang Y, Knight PJ, Homsher E, Sellers JR (2013) Mammalian myosin-18A, a highly divergent myosin. J Biol Chem 288(13):9532–9548. doi: 10.1074/jbc.M112.441238 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hau M (2007) Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. Bioessays 29(2):133–144PubMedCrossRefGoogle Scholar
  56. Hirschenhauser K, Oliveira RF (2006) Social modulation of androgens in male vertebrates: meta-analyses of the challenge hypothesis. Anim Behav 71:265–277CrossRefGoogle Scholar
  57. Hirschenhauser K, Winkler H, Oliveira RF (2003) Comparative analysis of male androgen responsiveness to social environment in birds: the effects of mating system and paternal incubation. Horm Behav 43:508–519PubMedCrossRefGoogle Scholar
  58. Hutchison JB, Steimer T (1981) Brain 5beta-reductase: a correlate of behavioral sensitivity to androgen. Science 213(4504):244–246. doi: 10.1126/science.7244635 PubMedCrossRefGoogle Scholar
  59. Jarvis ED, Gunturkun O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB, Consortium ABN (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6(2):151–159. doi: 10.1038/nrn1606 PubMedCrossRefGoogle Scholar
  60. Langlois VS, Zhang D, Cooke GM, Trudeau VL (2010) Evolution of steroid-5 alpha-reductases and comparison of their function with 5 beta-reductase. Gen Comp Endocrinol 166(3):489–497. doi: 10.1016/j.ygcen.2009.08.004 PubMedCrossRefGoogle Scholar
  61. Leiper JM, Bayliss JD, Pease RJ, Brett DJ, Scott JP, Shoulders CC (1994) Microsomal triglyceride transfer protein, the abetalipoproteinemia gene product, mediates the secretion of apolipoprotein B-containing lipoproteins from heterologous cells. J Biol Chem 269:21951–21954PubMedGoogle Scholar
  62. Lindsay WR, Giuliano CE, Houck JT, Day LB (2015) Acrobatic courtship display coevolves with brain size in manakins (Pipridae). Brain Behav Evol 85(1):25–36CrossRefGoogle Scholar
  63. Lyon BE, Montgomerie RD (1986) Delayed plumage maturation in passerine birds: reliable signaling by subordinate males? Evolut Int J org Evolut 40(3):605–615CrossRefGoogle Scholar
  64. Maney DL, Goode CT, Lange HS, Sanford SE, Soloman BJ (2008) Estradiol modulates neural responses to song in a seasonal sonbird. J Comp Neurol 511:173–186PubMedCrossRefGoogle Scholar
  65. Mangiamele LA, Fuxjager MJ, Schuppe ER, Taylor R, Hodl W, Preininger D (2016) Increased androgenic sensitivity in the hind limb neuromuscular system marks the evolution of a derived gestural display. Proc Natl Acad Sci USA 113(20):5664–5669PubMedPubMedCentralCrossRefGoogle Scholar
  66. Marler CA, Moore MC (1988) Evolutionary costs of aggression revealed by testosterone manipulations in free-living male lizards. Behav Ecol Sociobiol 23(1):21–26CrossRefGoogle Scholar
  67. McDonald DB, Clay RP, Brumfield RT, Braun MJ (2001) Sexual selection on plumage and behavior in an avian hybrid zone: experimental tests of male-male interactions. Evolution Int J org Evolution 55(7):1443–1451CrossRefGoogle Scholar
  68. O’Connell LA, Hofmann HA (2011) The vertebrate mesolimbic reward systems and social behavior network: a comparative synthesis. J Comp Neurol 519:3599–3639PubMedCrossRefGoogle Scholar
  69. O’Connell LA, Hofmann HA (2012) Evoltuion of vertebrate social decision-making network. Science 336:1154–1157PubMedCrossRefGoogle Scholar
  70. Olsson M, Wapstra E, Madsen T, Silverin B (2000) Testosterone, ticks and travels: a test of the immunocompetence-handicap hypothesis in free-ranging male sand lizards. Proc R Soc B 267(1459):2339–2343PubMedPubMedCentralCrossRefGoogle Scholar
  71. Owens IP, Short RV (1995) Hormonal basis of sexual dimorphism in birds: implications for new theories of sexual selection. Trends Ecol Evol 10:44–47PubMedCrossRefGoogle Scholar
  72. Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tisues mediating mating behavior in the female guinea pig. Endocrinology 65:369–382PubMedCrossRefGoogle Scholar
  73. Prum RO (1990) Phylogenetic analysis of the evolution of display behavior in the neotropical manakins (Aves, Pipridae). Ethology 84(3):202–231CrossRefGoogle Scholar
  74. Prum RO (1994) Phylogenetic analysis of the evolution of alternative social behavior in the manakins (Aves: Pipridae). Evolut Int J org Evolution 48(5):1657–1675CrossRefGoogle Scholar
  75. Prum RO (1998) Sexual selection and the evolution of mechanical sound production in manakins (Aves: Pipridae). Anim Behav 55:977–994. doi: 10.1006/anbe.1997.0647 PubMedCrossRefGoogle Scholar
  76. Rhoda J, Corbier P, Roffi J (1984) Gonadal steroid concentrations in serum and hypothalamus of the rat at birth: aromatization of testosterone to 17 beta-estradiol. Endocrinology 114:1754–1760PubMedCrossRefGoogle Scholar
  77. Roberts ML, Buchanan KL, Hasselquist D, Evans MR (2007) Effects of testosterone and corticosterone on immunocompetence in the zebra finch. Horm Behav 51(1):126–134. doi: 10.1016/j.yhbeh.2006.09.004 PubMedCrossRefGoogle Scholar
  78. Rome LC, Syme DA, Hollingworth S, Lindstedt SL, Baylor SM (1996) The whistle and the rattle: the design of sound producing muscles. Proc Natl Acad Sci U S A 93(15):8095–8100. doi: 10.1073/pnas.93.15.8095 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rosvall KA, Bergeon Burns C, Jayaratna S, Dossey EK (2016a) Gonads and the evolution of hormonal phenotypes. Integr Comp Biol 56:225–234PubMedCrossRefGoogle Scholar
  80. Rosvall KA, Bergeon Burns CM, Jayaratna SP, E.D K (2016b) Divergence along the gonadal steroidogenic pathway: implications for hormone-mediated phenotypic evolution. Horm Behav 8:1–8CrossRefGoogle Scholar
  81. Russell DW, Wilson JD (1994) Steroid 5alpha-reductase: two genes/two enzymes. Annu Rev Biochem 63:25–61. doi: 10.1146/annurev.biochem.63.1.25 PubMedCrossRefGoogle Scholar
  82. Saldanha CJ, Schultz JD, London SE, Schlinger BA (2000) Telencephalic aromatase but not a song circuit in a sub-oscine passerine, the golden-collared manakin (Manacus vitellinus). Brain Behav Evol 56(1):29–37. doi: 10.1159/000006675 PubMedCrossRefGoogle Scholar
  83. Schlinger BA (1997) Sex steroids and their actions on the birdsong system. J Neurobiol 33(5):619–631PubMedCrossRefGoogle Scholar
  84. Schlinger BA, Brenowitz EA (2009) Neural and hormonal control of birdsong. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain, and behavior. Academic Press, San DiegoGoogle Scholar
  85. Schlinger BA, Fivizzani AJ, Callard GV (1989) Aromatase, 5alpha-reductase and 5beta-reductase in brain, pituitary and skin of the sex-role reversed Wilson’s phalarope. J Endocrinol 122(2):573–581. doi: 10.1677/joe.0.1220573 PubMedCrossRefGoogle Scholar
  86. Schlinger BA, Amur-Umarjee S, Campagnoni AT, Arnold AP (1995) 5β-reductase and other androgen-metabolizing enzymes in primary cultures of developing zebra finch telencephalon. J Neuroendocrinol 7(3):187–192PubMedCrossRefGoogle Scholar
  87. Schlinger BA, Schultz JD, Hertel F (2001) Neuromuscular and endocrine control of an avian courtship behavior. Horm Behav 40(2):276–280. doi: 10.1006/hbeh.2001.1669 PubMedCrossRefGoogle Scholar
  88. Schlinger BA, Day LB, Fusani L (2008a) Behavior, natural history and neuroendocrinology of a tropical bird. Gen Comp Endocrinol 157(3):254–258. doi: 10.1016/j.ygcen.2008.05.015 PubMedCrossRefGoogle Scholar
  89. Schlinger BA, Fusani L, Day L (2008b) Hormonal control of courtship in male Golden-collared manakins (Manacus vitellinus). Ornitol Neotrop 19:229–239Google Scholar
  90. Schlinger BA, Barske J, Day L, Fusani L, Fuxjager MJ (2013) Hormones and the neuromuscular control of courtship in the golden-collared manakin (Manacus vitellinus). Front Neuroendocrinol 34(3):143–156PubMedPubMedCentralCrossRefGoogle Scholar
  91. Stein AC, Uy JAC (2006) Plumage brightness predicts male mating success in the lekking golden-collared manakin, Manacus vitellinus. Behav Ecol 17(1):41–47. doi: 10.1093/beheco/ari095 CrossRefGoogle Scholar
  92. van der Schoot P (1980) Effects of dihydrotestosterone and oestradiol on sexual differentiation in male rats. J Endocrinol 84:397–407PubMedCrossRefGoogle Scholar
  93. Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106:306–316PubMedCrossRefGoogle Scholar
  94. Wild JM, Balthazart J (2013) Neural pathways mediating control of reproductive behavior in male Japanese quail. J Comp Neurol 521(9):2067–2087PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wild JM, Botelho JF (2015) Involvement of the avian song system in reproductive behaviour. Biol Lett 11(12):20150773PubMedPubMedCentralCrossRefGoogle Scholar
  96. Williams H (2001) Choreography of song, dance and beak movements in the zebra finch (Taeniopygia guttata). J Exp Biol 204(20):3497–3506PubMedGoogle Scholar
  97. Wingfield JC, Hegner RE, Dufty AM, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136(6):829–846CrossRefGoogle Scholar
  98. Wyce A, Bai YC, Nagpal S, Thompson CC (2010) Research resource: the androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol 24(8):1665–1674. doi: 10.1210/me.2010-0138 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xu JM, Qiu YH, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279(5358):1922–1925. doi: 10.1126/science.279.5358.1922 PubMedCrossRefGoogle Scholar
  100. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065. doi: 10.1126/science.1084398 PubMedCrossRefGoogle Scholar
  101. Yoon HG, Wong JM (2006) The corepressors silencing mediator of retinoid and thyroid hormone receptor and nuclear receptor corepressor are involved in agonist- and antagonist-regulated transcription by androgen receptor. Mol Endocrinol 20(5):1048–1060. doi: 10.1210/em.2005-0324 PubMedCrossRefGoogle Scholar
  102. York B, O’Malley BW (2010) Steroid receptor coactivator (SRC) family: masters of systems biology. J Biol Chem 285:43–50CrossRefGoogle Scholar
  103. Yoshioka M, Boivin A, Ye P, Labrie F, St-Amand J (2006) Effects of dihydrotestosterone on skeletal muscle transcriptome in mice measured by serial analysis of gene expression. J Mol Endocrinol 36(2):247–259PubMedCrossRefGoogle Scholar
  104. Yoshioka M, Boivin A, Bolduc C, St-Amand J (2007) Gender difference of androgen actions on skeletal muscle transcriptome. J Mol Endocrinol 39(1–2):119–133. doi: 10.1677/jme-07-0027 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Matthew J. Fuxjager
    • 1
    Email author
  • Meredith C. Miles
    • 1
  • Barney A. Schlinger
    • 2
    • 3
    • 4
    • 5
  1. 1.Department of BiologyWake Forest UniversityWinston-SalemUSA
  2. 2.Departments of Integrative Biology and PhysiologyUCLALos AngelesUSA
  3. 3.Ecology and Evolutionary BiologyUCLALos AngelesUSA
  4. 4.Laboratory of NeuroendocrinologyUCLALos AngelesUSA
  5. 5.Smithsonian Tropical Research InstitutePanama CityPanama

Personalised recommendations