Advertisement

Journal of Comparative Physiology A

, Volume 203, Issue 11, pp 915–927 | Cite as

Homing in a tropical social wasp: role of spatial familiarity, motivation and age

  • Souvik Mandal
  • Anindita Brahma
  • Raghavendra Gadagkar
Original Paper

Abstract

We captured foragers of the tropical social wasp Ropalidia marginata from their nests and displaced them at different distances and directions. Wasps displaced within their probable foraging grounds returned to their nests on the day of release although they oriented randomly upon release; however, wasps fed before release returned sooner, displaying nest-ward orientation. When displaced to places far from their nests, thus expected to be unfamiliar, only a third returned on the day of release showing nest-ward orientation; others oriented randomly and either returned on subsequent days or never. When confined within mosquito-net tents since eclosion and later released to places close to their nests (but unfamiliar), even fed wasps oriented randomly, and only older wasps returned, taking longer time. Thus, contrary to insects inhabiting less-featured landscapes, R. marginata foragers appear to have thorough familiarity with their foraging grounds that enables them to orient and home efficiently after passive displacement. Their initial orientation is, however, determined by an interaction of the information acquired from surrounding landscape and their physiological motivation. With age, they develop skills to home from unfamiliar places. Homing behaviour in insects appears to be influenced by evolutionarily conserved mechanisms and the landscape in which they have evolved.

Keywords

Ropalidia marginata Social wasp Hymenoptera Spatial familiarity Homing 

Notes

Acknowledgements

We thank Kavita Isvaran and Diptarup Nandi for their help with statistical analyses, and Thomas S. Collett for many helpful discussions. We thank the Department of Science and Technology, Department of Biotechnology, Ministry of Environment and Forests, and Council of Scientific and Industrial Research, Government of India, for financial assistance (to RG).

Author contribution

SM and RG designed the study, SM and AB conducted the study, SM analysed the data and SM and RG co-wrote the paper.

Compliance with ethical standards

Ethical standards

This article does not contain any study with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

359_2017_1202_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2745 kb)

References

  1. Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw. doi: 10.18637/jss.v067.i01 Google Scholar
  2. Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Z Vgl Physiol 41:1–25. doi: 10.1007/BF00340239 Google Scholar
  3. Beugnon G, Lachaud JP, Chagné P (2005) Use of long-term stored vector information in the neotropical ant Gigantiops destructor. J Insect Behav 18:415–432. doi: 10.1007/s10905-005-3700-8 CrossRefGoogle Scholar
  4. Bracis C, Gurarie E, Van Moorter B, Goodwin RA (2015) Memory effects on movement behavior in animal foraging. PLoS One 10:1–21. doi: 10.1371/journal.pone.0136057 CrossRefGoogle Scholar
  5. Buehlmann C, Woodgate JL, Collett TS (2016) On the encoding of panoramic visual scenes in navigating wood ants. Curr Biol 26:2022–2027. doi: 10.1016/j.cub.2016.06.005 CrossRefPubMedGoogle Scholar
  6. Bühlmann C, Cheng K, Wehner R (2011) Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J Exp Biol 214:2845–2853. doi: 10.1242/jeb.054601 CrossRefPubMedGoogle Scholar
  7. Capaldi EA, Dyer FC (1999) The role of orientation flights on homing performance in honeybees. J Exp Biol 202:1655–1666PubMedGoogle Scholar
  8. Cartwright BA, Collett TS (1987) Landmark Maps for Honeybees. Biol Cybern 57:85–93CrossRefGoogle Scholar
  9. Cheng K (2000) How honeybees find a place: lessons from a simple mind. Anim Learn Behav 28:1–15CrossRefGoogle Scholar
  10. Cheng K (2012) Arthropod navigation: Ants, Bees, Crabs, Spiders Finding their way. In: Wasserman EA, Zentall TR (eds) The Oxford handbook of comparative cognition, 2nd edn. Oxford University, New York, pp 347–365Google Scholar
  11. Cheng K, Freas CA (2015) Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation. J Comp Physiol A 201:517–532. doi: 10.1007/s00359-015-0984-9 CrossRefGoogle Scholar
  12. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the Central Australian desert ant Melophorus bagoti. Behav Processes 80:261–268. doi: 10.1016/j.beproc.2008.10.015 CrossRefPubMedGoogle Scholar
  13. Collett TS (1992) Landmark learning and guidance in insects. Phil Trans R Soc B London 337:295–303CrossRefGoogle Scholar
  14. Collett M (2010) How desert ants use a visual landmark for guidance along a habitual route. Proc Natl Acad Sci U S A 107:11638–11643. doi: 10.1073/pnas.1001401107 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Collett M (2014) A desert ant’s memory of recent visual experience and the control of route guidance. Proc Biol Sci 281:20140634. doi: 10.1098/rspb.2014.0634 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Collett TS, Collett M (2000) Path integration in insects. Curr Opin Neurobiol 10:757–762CrossRefPubMedGoogle Scholar
  17. Collett TS, Collett M (2004) How do insects represent familiar terrain? J Physiol Paris 98:259–264. doi: 10.1016/j.jphysparis.2004.03.012 CrossRefPubMedGoogle Scholar
  18. Collett M, Harland D, Collett TS (2002) The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. J Exp Biol 205:807–814PubMedGoogle Scholar
  19. Collett TS, Graham P, Durier V (2003) Route learning by insects. Curr Opin Neurobiol 13:718–725. doi: 10.1016/j.conb.2003.10.004 CrossRefPubMedGoogle Scholar
  20. Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800. doi: 10.1016/j.cub.2013.07.020 CrossRefPubMedGoogle Scholar
  21. Collett TS, Lent DD, Graham P (2014) Scene perception and the visual control of travel direction in navigating wood ants. Phil Trans R Soc Lond B Biol Sci 369:20130035. doi: 10.1098/rstb.2013.0035 CrossRefGoogle Scholar
  22. Degen J, Kirbach A, Reiter L et al (2016) Honeybees learn landscape features during exploratory orientation flights. Curr Biol 26:2800–2804. doi: 10.1016/j.cub.2016.08.013 CrossRefPubMedGoogle Scholar
  23. Dittmar L, Sturzl W, Baird E et al (2010) Goal seeking in honeybees: matching of optic flow snapshots? J Exp Biol 213:2913–2923. doi: 10.1242/jeb.043737 CrossRefPubMedGoogle Scholar
  24. Dyer FC (1996) Spatial memory and navigation by honeybees on the scale of the foraging range. J Exp Biol 199:147–154PubMedGoogle Scholar
  25. Dyer FC, Gill M, Sharbowski J (2002) Motivation and vector navigation in honey bees. Naturwissenschaften 89:262–264. doi: 10.1007/s00114-002-0311-5 CrossRefPubMedGoogle Scholar
  26. Fagan WF, Lewis MA, Auger-Méthé M et al (2013) Spatial memory and animal movement. Ecol Lett 16:1316–1329. doi: 10.1111/ele.12165 CrossRefPubMedGoogle Scholar
  27. Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404PubMedGoogle Scholar
  28. Fleischmann PN, Christian M, Müller VL et al (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol 219:3137–3145. doi: 10.1242/jeb.140459 CrossRefPubMedGoogle Scholar
  29. Freas CA, Cheng K (2017) Learning and time-dependent cue choice in the desert ant, Melophorus bagoti. Ethology 123:503–515. doi: 10.1111/eth.12626 CrossRefGoogle Scholar
  30. Fukushi T, Wehner R (2004) Navigation in wood ants Formica japonica: context dependent use of landmarks. J Exp Biol 207:3431–3439. doi: 10.1242/jeb.01159 CrossRefPubMedGoogle Scholar
  31. Gadagkar R (2001) The social biology of Ropalidia marginata: toward understanding the evolution of eusociality. Harvard University, LondonGoogle Scholar
  32. Graham P, Cheng K (2009) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937. doi: 10.1016/j.cub.2009.08.015 CrossRefPubMedGoogle Scholar
  33. Graham P, Collett TS (2006) Bi-directional route learning in wood ants. J Exp Biol 209:3677–3684. doi: 10.1242/jeb.02414 CrossRefPubMedGoogle Scholar
  34. Harris RA, Hempel de Ibarra N, Graham P, Collett TS (2005) Ant navigation: priming of visual route memories. Nature 438:302–306. doi: 10.1038/438302a CrossRefPubMedGoogle Scholar
  35. Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83:1–12. doi: 10.1016/j.nlm.2004.05.011 CrossRefPubMedGoogle Scholar
  36. Komsta L (2011) Outliers: tests for outliers. ​R package version 0.14Google Scholar
  37. Lent DD, Graham P, Collett TS (2013) Visual scene perception in navigating wood ants. Curr Biol 23:684–690. doi: 10.1016/j.cub.2013.03.016 CrossRefPubMedGoogle Scholar
  38. Mandal S, Gadagkar R (2015) Homing abilities of the tropical primitively eusocial paper wasp Ropalidia marginata. J Comp Physiol A 201:795–802. doi: 10.1007/s00359-015-1019-2 CrossRefGoogle Scholar
  39. Mangan M, Webb B (2012) Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav Ecol 23:944–954. doi: 10.1093/beheco/ars051 CrossRefGoogle Scholar
  40. Menzel R, Greggers U (2015) The memory structure of navigation in honeybees. J Comp Physiol 201:547–561. doi: 10.1007/s00359-015-0987-6 CrossRefGoogle Scholar
  41. Menzel R, Geiger K, Chittka L et al (1996) The knowledge base of bee navigation. J Exp Biol 199:141–146PubMedGoogle Scholar
  42. Menzel R, Geiger K, Joerges J et al (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55:139–152CrossRefPubMedGoogle Scholar
  43. Menzel R, Brandt R, Gumbert A et al (2000) Two spatial memories for honeybee navigation. Proc R Soc London B 267:961–968. doi: 10.1098/rspb.2000.1097 CrossRefGoogle Scholar
  44. Möller R (2012) A model of ant navigation based on visual prediction. J Theor Biol 305:118–130. doi: 10.1016/j.jtbi.2012.04.022 CrossRefPubMedGoogle Scholar
  45. Narendra A (2007) Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1804–1812. doi: 10.1242/jeb.02769 CrossRefPubMedGoogle Scholar
  46. Narendra A, Gourmaud S, Zeil J (2013) Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc B. doi: 10.1098/rspb.2013.0683 PubMedPubMedCentralGoogle Scholar
  47. Osborne JL, Smith A, Clark SJ et al (2013) The ontogeny of bumblebee flight trajectories: from naive explorers to experienced foragers. PLoS One. doi: 10.1371/journal.pone.0078681 Google Scholar
  48. Pahl M, Zhu H, Tautz J, Zhang S (2011) Large scale homing in honeybees. PLoS One 6:e19669. doi: 10.1371/journal.pone.0019669 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Palikij J, Ebert E, Preston M et al (2012) Evidence for the honeybee’s place knowledge in the vicinity of the hive. J Insect Physiol 58:1289–1298. doi: 10.1016/j.jinsphys.2012.07.001 CrossRefPubMedGoogle Scholar
  50. Reynolds AM, Smith AD, Menzel R et al (2007) Displaced honey bees perform optimal scale-free search flights. Ecology 88:1955–1961. doi: 10.1890/06-1916.1 CrossRefPubMedGoogle Scholar
  51. Schultheiss P, Cheng K (2011) Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. Anim Behav 81:1031–1038. doi: 10.1016/j.anbehav.2011.02.008 CrossRefGoogle Scholar
  52. Schultheiss P, Cheng K, Reynolds AM (2015) Searching behavior in social Hymenoptera. Learn Motiv 50:59–67. doi: 10.1016/j.lmot.2014.11.002 CrossRefGoogle Scholar
  53. Sen R, Gadagkar R (2010) Natural history and behaviour of the primitively eusocial wasp Ropalidia marginata (Hymenoptera: Vespidae): a comparison of the two sexes. J Nat Hist 44:959–968. doi: 10.1080/00222931003615703 CrossRefGoogle Scholar
  54. Srinivasan MV, Zhang S, Lehrer M, Collett TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199:237–244PubMedGoogle Scholar
  55. Stieb SM, Muenz TS, Wehner R, Rössler W (2010) Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev Neurobiol 70:408–423. doi: 10.1002/dneu.20785 CrossRefPubMedGoogle Scholar
  56. Stone T, Mangan M, Ardin P, Webb B (2014) Sky segmentation with ultraviolet images can be used for navigation. Robot Sci Syst. doi: 10.15607/RSS.2014.X.047 Google Scholar
  57. Towne WF, Ritrovato AE, Esposto A, Brown DF (2017) Honeybees use the skyline in orientation. J Exp Biol jeb-160002. doi: 10.1242/jeb.160002
  58. Wehner R (2013) Life as a cataglyphologist—and beyond. Annu Rev Entomol 58:1–18. doi: 10.1146/annurev-ento-120811-153641 CrossRefPubMedGoogle Scholar
  59. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338. doi: 10.1007/BF00605445 CrossRefGoogle Scholar
  60. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University, Oxford, pp 9–30CrossRefGoogle Scholar
  61. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  62. Wehner R, Meier C, Zollikofer CPE (2004) The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol Entomol 29:240–250. doi: 10.1111/j.0307-6946.2004.00591.x CrossRefGoogle Scholar
  63. Wickham H (2016) Scales: scale functions for visualization. ​R package version 0.4. 0. https://CRAN.R-project.org/package=scales. Accessed 12 Dec 2016
  64. Wolf E (1926) Über das Heimkehrvermögen der Bienen. Z Vgl Physiol 3:615–691. doi: 10.1007/BF00354117 CrossRefGoogle Scholar
  65. Wolf E (1927) Über das Heimkehrvermögen der Bienen (Zweite Mitteilung.). Z Vgl Physiol 6:221–254. doi: 10.1007/BF00339256 CrossRefGoogle Scholar
  66. Wystrach A, Beugnon G, Cheng K (2012) Ants might use different view-matching strategies on and off the route. J Exp Biol 215:44–55. doi: 10.1242/jeb.059584 CrossRefPubMedGoogle Scholar
  67. Wystrach A, Schwarz S, Baniel A, Cheng K (2013) Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit. Proc R Soc B. doi: 10.1098/rspb.2013.1677 PubMedPubMedCentralGoogle Scholar
  68. Zeil J (2012) Visual homing: an insect perspective. Curr Opin Neurobiol 22:285–293. doi: 10.1016/j.conb.2011.12.008 CrossRefPubMedGoogle Scholar
  69. Zeil J, Hofmann MI, Chahl JS (2003) Catchment areas of panoramic snapshots in outdoor scenes. J Opt Soc Am A 20:450–469CrossRefGoogle Scholar
  70. Zeil J, Narendra A, Stürzl W (2014) Looking and homing: how displaced ants decide where to go. Phil Trans R Soc B 369:20130034. doi: 10.1098/rstb.2013.0034 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Division of Biological Sciences, Centre for Ecological SciencesIndian Institute of ScienceBangaloreIndia

Personalised recommendations