Skip to main content
Log in

Characterization of the encoding properties of intraspinal mechanosensory neurons in the lamprey

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Proprioceptive sensory inputs are an integral part of the closed-loop system of locomotion. In the lamprey, a model organism for vertebrate locomotion, such sensory inputs come from intraspinal mechanosensory cells called “edge cells”. These edge cells synapse directly onto interneurons in the spinal central pattern generator (CPG) circuit and allow the CPG to adjust the motor output according to how the body is bending. However, the encoding properties of the edge cells have never been fully characterized. To identify these properties and better understand edge cells’ role in locomotion, we isolated spinal cords of silver lampreys (Ichthyomyzon unicuspis) and recorded extracellularly from the lateral tracts where edge cell axons are located. We identified cells that responded to mechanical stimuli and used standard spike sorting algorithms to identify separate units, then examined how the cells respond to bending rate and bending angle. Although some cells respond to the bending angle, as was previously known, the strongest and most common responses were to bending velocity. These encoding properties will help us better understand how lampreys and other basal vertebrates adapt their locomotor rhythms to different water flow patterns, perturbations, or other unexpected changes in their environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CPG:

Central pattern generator

K–S:

Kolmogorov–Smirnov test for identical distributions

PCA:

Principal component analysis

PD:

Proportional-derivative

PID:

Proportional-integral-derivative

CL:

Center to left

LC:

Left to center

LL:

Hold on left side

CR:

Center to right

RC:

Right to center

RR:

Hold on right side

References

  • Aiello BR, Stewart TA, Hale ME (2016) Mechanosensation in an adipose fin. Proc R Soc Lond B 283(1826):20152794. doi:10.1098/rspb.2015.2794

    Article  Google Scholar 

  • Alexandrowicz JS (1967) Receptor organs in thoracic and abdominal muscles of Crustacea. Biol Rev 42(2):288–325. doi:10.1111/j.1469-185X.1967.tb01422.x

    Article  Google Scholar 

  • Anadón R, Molist P, Pombal MA, Rodríguez Moldes I, Rodicio MC (1995) Marginal cells in the spinal cord of four elasmobranchs (Torpedo marmorata, T. torpedo, Raja undulata and Scyliorhinus canicula): evidence for homology with lamprey intraspinal stretch receptor neurons. Eur J Neurosci 7(5):934–943

    Article  PubMed  Google Scholar 

  • Andersson O, Forssberg H, Grillner S, Wallén P (1981) Peripheral feedback mechanisms acting on the central pattern generators for locomotion in fish and cat. Can J Physiol Pharmacol 59(7):713–726

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Ann Rev Neurosci 31(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Blackshaw SE (1993) Stretch receptors and body wall muscle in leeches. Comp Biochem Physiol 105A(4):643–652. doi:10.1016/0300-9629(93)90263-4

    Article  Google Scholar 

  • Bouman CA, Shapiro M, Cook G, Atkins CB, Cheng H (1997) Cluster: An unsupervised algorithm for modeling gaussian mixtures. https://engineering.purdue.edu/bouman/software/cluster/manual.pdf

  • Büschges A (1994) The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. J Exp Biol 189(1):285–292

    PubMed  Google Scholar 

  • Cang J, Frieson W (2000) Ventral stretch receptors can change intersegmental phase relationships. J Neurosci 20(20):7822–7829

    CAS  PubMed  Google Scholar 

  • Cang J, Yu X, Friesen OW (2001) Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons. J Comp Physiol A 187(7):569–579. doi:10.1007/s003590100229

    CAS  PubMed  Google Scholar 

  • Chapman KM, Mosinger JL, Duckrow RB (1979) The role of distributed viscoelastic coupling in sensory adaptation in an insect mechanoreceptor. J Comp Physiol A 131(1):1–12. doi:10.1007/BF00613078

    Article  Google Scholar 

  • Chevallier S, Jan Ijspeert A, Ryczko D, Nagy F, Cabelguen JM (2008) Organisation of the spinal central pattern generators for locomotion in the salamander: Biology and modelling. Brain Res Rev 57(1):147–161

    Article  PubMed  Google Scholar 

  • Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27(C):1–228. doi:10.1016/S0065-2806(08)60013-2

    Google Scholar 

  • Franklin GF, Powell JD, Emami-Naeini A (2006) Feedback control of dynamic systems, 5th edn. Pearson Education, Upper Saddle River

    Google Scholar 

  • French AS, Torkkeli PH (2008) The power law of sensory adaptation: simulation by a model of excitability in spider mechanoreceptor neurons. Ann Biomed Eng 36(1):153–161. doi:10.1007/s10439-007-9392-9

    Article  PubMed  Google Scholar 

  • Grillner S, McClellan A, Perret C (1981) Entrainment of the spinal pattern generators for swimming by mechanosensitive elements in the lamprey spinal cord in vitro. Brain Res 217:380–386

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Williams TL, Lagerbäck PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223(4635):500–503

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Parker D, El Manira A (1998) Vertebrate locomotion: a lamprey perspective. Ann NY Acad Sci 860(1):1–18. doi:10.1111/j.1749-6632.1998.tb09035.x

    Article  CAS  PubMed  Google Scholar 

  • Hardy AR, Steinworth BM, Hale ME (2016) Touch sensation by pectoral fins of the catfish Pimelodus pictus. Proc R Soc Lond B 283(1824):20152652. doi:10.1098/rspb.2015.2652

    Article  Google Scholar 

  • Heitler WJ (2016) Dataview. URL: http://www.st-andrews.ac.uk/wjh/dataview/

  • Hoffman N, Parker D (2011) Interactive and individual effects of sensory potentiation and region-specific changes in excitability after spinal cord injury. Neurosci 199:563–576. doi:10.1016/j.neuroscience.2011.09.021

    Article  CAS  Google Scholar 

  • Horak F, Kuo A (2000) Postural adaptation for altered environments, tasks, and intentions. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, New York, pp 267–281

    Chapter  Google Scholar 

  • Hsu L, Zelenin P, Grillner S, Orlovsky G, Deliagina T (2013) Intraspinal stretch receptor neurons mediate different motor responses along the body in lamprey. J Comp Neurol 41:3848–3861

    Google Scholar 

  • Jalalvand E, Robertson B, Wallén P, Hill RH, Grillner S (2014) Laterally projecting cerebrospinal fluidcontacting cells in the lamprey spinal cord are of two distinct types. J Comp Neurol 522(8):1753–1768. doi:10.1002/cne.23542

    Article  CAS  PubMed  Google Scholar 

  • Jalalvand E, Robertson B, Wallén P, Grillner S (2016) Ciliated neurons lining the central canal sense both fluid movement and pH through ASIC3. Nat Commun 7(10):002. doi:10.1038/ncomms10002

    Google Scholar 

  • Kondoh Y, Okuma J, Newland PL (1995) Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. J Neurophysiol 73(5):1829–1842

    CAS  PubMed  Google Scholar 

  • Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • McClellan AD, Sigvardt KA (1988) Features of entrainment of spinal patern generators for locomotor activity in the lamprey. J Neurosci 8:133–145

    CAS  PubMed  Google Scholar 

  • McCloskey DI (1973) Differences between the senses of movement and position shown by the effects of loading and vibration of muscles in man. Brain Res 61(C):119–131. doi:10.1016/0006-8993(73)90521-0

    Article  Google Scholar 

  • Necker R (2006) Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. J Comp Physiol A 192(5):439–448. doi:10.1007/s00359-006-0105-x

    Article  Google Scholar 

  • Pearson KG, Ramirez JM, Jiang W (1992) Entrainment of the locomotor rhythm by group Ib afferents from ankle extensor muscles in spinal cats. Exp Brain Res 90(3):557–566. doi:10.1007/BF00230939

    Article  CAS  PubMed  Google Scholar 

  • Peterka RJ (2003) Simplifying the complexities of maintaining balance. IEEE Eng Med Biol Mag 22(2):63–68. doi:10.1109/MEMB.2003.1195698

    Article  PubMed  Google Scholar 

  • Prochazka A, Gorassini M (1998) Models of ensemble firing of muscle spindle afferents recorded during normal locomotion in cats. J Physiol 507(1):277–291. doi:10.1111/j.1469-7793.1998.277bu.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proske U, Gandevia SC (2012) The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev 92(4):1651–1697. doi:10.1152/physrev.00048.2011

    Article  CAS  PubMed  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia AS, McNamara JO, White LE (eds) (2008) Neuroscience. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Rey HG, Pedreira C, Quian Quiroga R (2015) Past, present and future of spike sorting techniques. Brain Res Bull 119:106–117. doi:10.1016/j.brainresbull.2015.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridgel AL, Frazier SF, DiCaprio RA, Zill SN (2000) Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. J Comp Physiol A 186(4):359–374. doi:10.1007/s003590050436

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg J, Necker R (2000) Fine structural evidence of mechanoreception in spinal lumbosacral accessory lobes of pigeons. Neurosci Lett 285(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Rossignol S, Dubuc RJ, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86(1):89–154

    Article  PubMed  Google Scholar 

  • Rovainen C (1985) Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey. J Neurophys 54:959–977

    CAS  Google Scholar 

  • Rovainen CM (1974) Synaptic interactions of identified nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154(2):189–206. doi:10.1002/cne.901540206

    Article  CAS  PubMed  Google Scholar 

  • Rovainen CM (1982) Neurophysiology. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic Press, London, pp 1–136

    Google Scholar 

  • Rovainen CM, Johnson PA, Roach EA, Mankovsky JA (1973) Projections of individual axons in lamprey spinal cord determined by tracings through serial sections. J Comp Neurol 149(2):193–201. doi:10.1002/cne.901490205

    Article  CAS  PubMed  Google Scholar 

  • Schroeder DM (1986) An ultrastructural study of the marginal nucleus, the intrinsic mechanoreceptor of the snake’s spinal cord. Somatosens Res 4(2):127–140

    Article  CAS  PubMed  Google Scholar 

  • Schroeder DM, Egar MW (1990) Marginal neurons in the urodele spinal cord and the associated denticulate ligaments. J Comp Neurol 301(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Popa DO (1995) An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments. IEEE Trans Robot Automat 11(6):912–921. doi:10.1109/70.478439

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Tytell ED, Cohen AH (2008) Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion. J Neurophysiol 99(5):2408–2419. doi:10.1152/jn.01085.2007

    Article  PubMed  Google Scholar 

  • Viana Di Prisco G, Wallén P, Grillner S (1990) Synaptic effects of intraspinal stretch-receptor neurons mediating movement-related feedback during locomotion. Brain Res 530(1):161–166

    Article  Google Scholar 

  • Vinay L, Barthe JY, Grillner S (1996) Central modulation of stretch receptor neurons during fictive locomotion in lamprey. J Neurophysiol 76(2):1224–1235

    CAS  PubMed  Google Scholar 

  • Williams TL, Sigvardt KA, Kopell N, Ermentrout GB, Remler MP (1990) Forcing of coupled nonlinear oscillators: studies of intersegmental coordination in the lamprey locomotor central pattern generator. J Neurophysiol 64(3):862–871

    CAS  PubMed  Google Scholar 

  • Williams R IV, Hale M (2015) Fin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish ( Lepomis macrochirus). J Exp Biol 218:3435–3447. doi:10.1242/jeb.123638

    Article  PubMed  Google Scholar 

  • Williams R IV, Neubarth N, Hale M (2013) The function of fin rays as proprioceptive sensors in fish. Nat Commun 4:1729. doi:10.1038/ncomms2751

    Article  PubMed  Google Scholar 

  • Zill SN, Moran DT (1981) The exoskeleton and insect proprioception I. Responses of tibial campaniform sensilla to external and muscle-generated force in the American cockroach Periplaneta americana. J Exp Biol 91:1–24

    Google Scholar 

Download references

Acknowledgements

This study benefited from discussions with Avis H. Cohen, Lisa J. Fauci, Christina Hamlet, and Megan C. Leftwich. Funding support was received from the National Science Foundation under Grant DBI-RCN 1325165 (to L. J. Fauci and A. H. Cohen). This material is based upon work supported by, or in part by, the US Army Research Laboratory and the US Army Research Office under Contract/Grant No. W911NF-14-1-0268. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the Tufts University animal care and use committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Tytell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massarelli, N., Yau, A.L., Hoffman, K.A. et al. Characterization of the encoding properties of intraspinal mechanosensory neurons in the lamprey. J Comp Physiol A 203, 831–841 (2017). https://doi.org/10.1007/s00359-017-1196-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1196-2

Keywords

Navigation