Skip to main content

Advertisement

Log in

Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The Drosophila melanogaster heart has become a principal model in which to study cardiac physiology and development. While the morphology of the heart in Drosophila and mammals is different, many of the molecular mechanisms that underlie heart development and function are similar and function can be assessed by similar physiological measurements, such as cardiac output, rate, and time in systole or diastole. Here, we have utilized an intact, optogenetic approach to assess the neural influence on heart rate in the third instar larvae. To simulate the release of modulators from the nervous system in response to environmental influences, we have directed expression of channel-rhodopsin variants to targeted neuronal populations to assess the role of these neural ensembles in directing release of modulators that may affect heart rate in vivo. Our observations show that the activation of targeted neurons, including cholinergic, dopaminergic, and serotonergic neurons, stimulate the release of cardioactive substances that increase heart rate after the initial activation at both room temperature and in a cold environment. This parallels previous studies suggesting these modulators play a crucial role in altering heart rate when applied to exposed hearts and adds to our understanding of chemical modulation of heart rate in intact Drosophila larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

ATR:

All-trans-retinal

Ach:

Acetylcholine

Cha-Gal4:

GAL4 driver targeting expression to cholinergic neurons (choline acetyltransferase)

ChR2:

Channel-rhodopsin-2

ChR2–XXL:

Channel-rhodopsin-2–XXL

ChR2-H134RII-mcherry:

Less sensitive channel-rhodopsin-2

CNS:

Central nervous system

DA:

Dopamine

HR:

Heart rate

Ple-Gal4:

GAL4 driver targeting expression to dopaminergic neurons (pale)

Ppk-Gal4:

GAL4 driver targeting expression to class IV dendritic arborization sensory neurons (pickpocket)

Trh-Gal4:

GAL4 driver targeting expression to serotonergic neurons (Tryptophan hydroxylase)

References

  • Alex A, Li A, Tanzi RE, Zhou C (2015) Optogenetic pacing in Drosophila melanogaster. Sci Adv 1(9):e1500639. doi:10.1126/sciadv.1500639

    Article  PubMed  PubMed Central  Google Scholar 

  • Badre NH, Martin ME, Cooper RL (2005) The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp Biochem Physiol A Mol Physiol Integr Physiol 140(3):363–376. doi:10.1016/j.cbpb.2005.01.019

    Article  Google Scholar 

  • Bier E, Bodmer R (2004) Drosophila, an emerging model for cardiac disease. Gene 342(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Bodmer R, Venkatesh TV (1998) Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev Genet 22(3):181–186

    Article  CAS  PubMed  Google Scholar 

  • Cammarato A, Ahrens CH, Alayari NN, Qeli E, Rucker J, Reedy MC, Zmasek CM, Gucek M, Cole RN, Van Eyk JE, Bodmer R, O’Rourke B, Bernstein SI, Foster DB (2011) A mighty small heart: the cardiac proteome of adult Drosophila melanogaster. PLoS One 6(4):11. doi:10.1371/journal.pone.0018497

    Article  Google Scholar 

  • Campos-Ortega JA (1974) Autoradiographic localization of 3H- gamma -aminobutyric acid uptake in the lamina ganglionaris of musca and Drosophila. Zeitschrift fur Zellforschung und Mikroskopische Anatomie 147(3):415–431

    Article  CAS  PubMed  Google Scholar 

  • Choma MA, Suter MJ, Vakoc BJ, Bouma BE, Tearney GJ (2011) Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis Model Mech 4(3):411–420. doi:10.1242/dmm.005231

    Article  CAS  PubMed  Google Scholar 

  • Collins C, Miller T (1977) Studies on the action of biogenic amines on cockroach heart. J Exp Biol 67:1–15

    CAS  PubMed  Google Scholar 

  • Dasari S, Cooper RL (2006) Direct influence of serotonin on the larval heart of Drosophila melanogaster. J Comp Physiol B 176(4):349–357. doi:10.1007/s00360-005-0058-3

    Article  CAS  PubMed  Google Scholar 

  • Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, Gao SQ, Fiala A, Langenhan T, Nagel G, Kittel RJ (2014) Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Proc Natl Acad Sci USA 111:13972–13977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro C, Titlow J, Majeed ZR, Cooper RL (2014) Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae. J Comp Physiol A 200(1):83–92. doi:10.1007/s00359-013-0864-0

    Article  Google Scholar 

  • Desai-Shah M, Papoy AR, Ward M, Cooper RL (2010) Roles of the Sarcoplasmic/Endoplasmic reticulum Ca2-ATPase, plasma membrane Ca2-ATPase and Na/Ca2 exchanger in regulation of heart rate in larval Drosophila. Open Physiol J 3:16–36

    Article  CAS  Google Scholar 

  • Dowse H, Ringo J, Power J, Johnson E, Kinney K, White L (1995) A congenital heart defect in Drosophila caused by an action-potential mutation. J Neurogenet 10(3):153–168. doi:10.3109/01677069509083461

    Article  CAS  PubMed  Google Scholar 

  • Dulcis D, Levine RB (2003) Innervation of the heart of the adult fruit fly, Drosophila melanogaster. J Comp Neurol 465(4):560–578. doi:10.1002/cne.10869

    Article  PubMed  Google Scholar 

  • Dulcis D, Levine RB (2005) Glutamatergic innervation of the heart initiates retrograde contractions in adult Drosophila melanogaster. J Neurosci 25(2):271–280. doi:10.1523/jneurosci.2906-04.2005

    Article  CAS  PubMed  Google Scholar 

  • Grossfield J (1978) Non-sexual behavior of Drosophila. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2B. Academic Press, New York, pp 1–126

    Google Scholar 

  • Gu GG, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila. J Neurobiol 28(3):269–280. doi:10.1002/neu.480280302

    Article  CAS  PubMed  Google Scholar 

  • Hillyer JF, Estévez-Lao TY, Mirzai HE (2015) The neurotransmitters serotonin and glutamate accelerate the heart rate of the mosquito Anopheles gambiae. Comp Biochem Physiol A Mol Integr Physiol 188:49–57. doi:10.1016/j.cbpa.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  • Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr Bio 17:2105–2116

    Article  CAS  Google Scholar 

  • Jennings HS (1904) Contributions to the study of the behavior of lower organisms. Publ Carnegie Inst Wash 16:256

    Google Scholar 

  • Johnson WA, Carder JW (2012) Drosophila nociceptors mediate larval aversion to dry surface environments utilizing both the painless TRP channel and the DEG/ENaC subunit, PPK1. Plos One 7:e32878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone AFM, Cooper RL (2006) Direct innervation of the Drosophila melanogaster larval aorta. Brain Res 1083(1):159–163

    Article  Google Scholar 

  • Johnson E, Ringo J, Dowse H (1997) Modulation of Drosophila heartbeat by neurotransmitters. J Comp Physiol B 167(2):89–97. doi:10.1007/s003600050051

    Article  CAS  PubMed  Google Scholar 

  • Johnson E, Ringo J, Bray N, Dowse H (1998) Genetic and pharmacological identification of ion channels central to the Drosophila cardiac pacemaker. J Neurogenet 12(1):1–24

    Article  PubMed  Google Scholar 

  • Kim MJ, Johnson WA (2014) ROS-mediated activation of Drosophila larval nociceptor neurons by UVC irradiation. BMC Neurosci 15:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Ainsley JA, Carder JW, Johnson WA (2013) Hyperoxia-triggered aversion behavior in Drosophila foraging larvae is mediated by sensory detection of hydrogen peroxide. J Neurogenet 27:151–162

    Article  CAS  PubMed  Google Scholar 

  • Lehmacher C, Abeln B, Paululat A (2012) The ultrastructure of Drosophila heart cells. Arthropod Struct Dev 41:459–474

    Article  PubMed  Google Scholar 

  • MacMillan HA, Andersen JL, Davies SA, Overgaard J (2015) The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci Rep 18(5):18607. doi:10.1038/srep18607

    Google Scholar 

  • Majeed ZR, Stacy A, Cooper RL (2014) Pharmacological and genetic identification of serotonin receptor subtypes on Drosophila larval heart and aorta. J Comp Physiol B 184(2):205–219. doi:10.1007/s00360-013-0795-7

    Article  CAS  PubMed  Google Scholar 

  • Malloy CA, Ritter K, Robinson J, English C, Cooper RL (2016) Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 186(1):45–57

    Article  CAS  PubMed  Google Scholar 

  • Mast SO (1911) Light and the behavior of organisms. Wiley, New York

    Book  Google Scholar 

  • Matsumoto H, Tanaka K, Noguchi H, Hayakawa Y (2003) Cause of mortality in insects under severe stress. Eur J Biochem 270:3469–3476

    Article  CAS  PubMed  Google Scholar 

  • Molina MR, Cripps RM (2001) Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech Devel 109(1):51–59. doi:10.1016/s0925-4773(01)00509-3

    Article  CAS  Google Scholar 

  • Nozdrachev AD (1983) The physiology of the autonomic nervous system. Meditsina, Liningrad (In Russian)

    Google Scholar 

  • Nozdrachev AD (1996) Chemical structure of the peripheral autonomic (visceral) reflex. Uspekhi Fiziolog Nauk 27:28–60 (In Russian)

    CAS  Google Scholar 

  • Nozdrachev AD, Bagaev VA (1983) Studies of electrical activity of the peripheral components of the autonomic nervous system in chronic experiments. J Auton Nerv Syst 9(2–3):347–360

    Article  CAS  PubMed  Google Scholar 

  • Ocorr K, Reeves NL, Wessells RJ, Fink M, Chen HSV, Akasaka T, Yasuda S, Metzger JM, Giles W, Posakony JW, Bodmer R (2007) KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci USA 104(10):3943–3948. doi:10.1073/pnas.0609278104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlov JU (1926) Die innervation des Darmes des Flusskrebses. Zschr F Mikr Anat Forschung 4:101–148

    Google Scholar 

  • Orlov JU (1927) Das Magenganglion des Fluβkrebses, Ein Beitrag zur vergleichenden Histologis des sympathischen Nervensystem. Z Mikrosk Anat Forschung 8(1):67–102

    Google Scholar 

  • Orlov JU (1929) Ueber den histologischen Bau der Ganglien des Mundmagennervensystem des Crustaceen. Ein Beitrag zur vergleichenden Histogie des sympatischen Nervensystems. Zschr F Zellforschung und mikroskop Anat. 8:493–541

    Article  Google Scholar 

  • Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC (2009) Temporal dynamics of neuronal activation by channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J Neurophysiol 101(6):3075–3088. doi:10.1152/jn.00071.2009

    Article  PubMed  PubMed Central  Google Scholar 

  • Ring RA (1982) Freezing-tolerant insects with low supercooling points. Comp Biochem Physiol A 73(4):605–612

    Article  Google Scholar 

  • Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic Press, Cambridge, pp 397–452

    Google Scholar 

  • Robertson JL, Tsubouchi A, Tracey WD (2013) Larval defense against attack from parasitoid wasps requires nociceptive neurons. PLoS One 8(10):e78704. doi:10.1371/journal.pone.0078704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawin EP, Harris LR, Campos AR, Sokolowski MB (1994) Sensorimotor transformation from light reception to phototactic behavior in Drosophila larvae (diptera: drosophilidae). J Insect Behav 7:553

    Article  Google Scholar 

  • Schoofs A, Hückesfeld S, Surendran S, Pankratz MJ (2014) Serotonergic pathways in the Drosophila larval enteric nervous system. J Insect Physiol 69:118–125

    Article  CAS  PubMed  Google Scholar 

  • Sénatore S, Rami Reddy V, Sémériva M, Perrin L, Lalevée N (2010) Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 6(9):e1001088. doi:10.1371/journal.pgen.1001088

    Article  PubMed  PubMed Central  Google Scholar 

  • Shuranova ZP, Burmistrov YM, Strawn JR, Cooper RL (2006) Evidence for an autonomic nervous system in decapod crustaceans. Int J Zool Res 2(3):242–283

    Article  Google Scholar 

  • Sulkowski MJ, Kurosawa MS, Cox DN (2011) Growing pains: development of the larval nocifensive response in Drosophila. Biol Bull 221(3):300–306. doi:10.1086/BBLv221n3p300

    Article  PubMed  PubMed Central  Google Scholar 

  • Titlow JS, Rufer J, King K, Cooper RL (2013) Pharmacological analysis of dopamine modulation in the Drosophila melanogaster larval heart. Physiol Rep 1(2):e00020. doi:10.1002/phy2.20

    Article  PubMed  PubMed Central  Google Scholar 

  • Titlow JS, Rice J, Majeed ZR, Holsopple E, Biecker S, Cooper RL (2014) Anatomical and genotype-specific mechanosensory responses in Drosophila melanogaster larvae. Neurosci Res 83:54–63. doi:10.1016/j.neures.2014.04.003

    Article  PubMed  Google Scholar 

  • Vankirk T, Powers E, Dowse HB (2016) Melatonin increases the regularity of cardiac rhythmicity in the Drosophila heart in both wild-type and strains bearing pathogenic mutations. J Comp Physiol B. doi:10.1007/s00360-016-1019-8

    PubMed  Google Scholar 

  • White LA, Ringo JM, Dowse HB (1992) Effects of deuterium oxide and temperature on heart rate in Drosophila melanogaster. J Comp Physiol B 162(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Wolf MJ, Amrein H, Izatt JA, Choma MA, Reedy MC, Rockman HA (2006) Drosophila as a model for the identification of genes causing adult human heart disease. Proc Natl Acad Sci USA 103(5):1394–1399. doi:10.1073/pnas.0507359103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Yuan Q, Vogt N, Looger LL, Jan LY, Jan YN (2010) Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature 468:921–U312

    Article  Google Scholar 

  • Zavarzin AA (1941) Ocherki po evol’utsionnoj gistologii nervnoj sistemy Essays on the evolutionary histology of the nervous system. In: Zavarzin AA, Izbrannye trudy (Selected Works), Tom III, Izdatel’stvo AN SSSR: Moskva-Leningrad, 1950. (In Russian)

  • Zhu Y-C, Yocom E, Sifers J, Uradu H, Cooper RL (2016a) Modulatory effects on Drosophila larva hearts in room temperature, acute and chronic cold stress. J Comp Physiol B 186(7):829–841

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y-C, Uradu H, Majeed ZR, Cooper RL (2016b) Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 4(3):e12695

    Article  PubMed  PubMed Central  Google Scholar 

  • Zornik E, Paisley K, Nichols R (1999) Neural transmitters and a peptide modulate Drosophila heart rate. Peptides 20(1):45–51. doi:10.1016/s0196-9781(98)00151-x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by G. Ribble fellowship from Department of Biology, Univ. of KY (A.O.), A. M. was supported by KY IDeA Network of Biomedical Research Excellence Grant #P20GM103436, funding provided by Research and a summer research undergraduate fellowship from the Outreach Center for Science and Health Career Opportunities at the University of Kentucky (JS) and personal funds (RLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Cooper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malloy, C., Sifers, J., Mikos, A. et al. Using optogenetics to assess neuroendocrine modulation of heart rate in Drosophila melanogaster larvae. J Comp Physiol A 203, 791–806 (2017). https://doi.org/10.1007/s00359-017-1191-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1191-7

Keywords

Navigation