Skip to main content
Log in

Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

From a biological perspective, a natural product can be defined as a compound evolved by an organism for chemical interactions with another organism including prey, predator, competitor, pathogen, symbiont or host. Natural products hold tremendous potential as drug leads and have been extensively studied by chemists and biochemists in the pharmaceutical industry. However, the biological purpose for which a natural product evolved is rarely addressed. By focusing on a well-studied group of natural products—venom components from predatory marine cone snails—this review provides a rationale for why a better understanding of the evolution, biology and biochemistry of natural products will facilitate both neuroscience and the potential for drug leads. The larger goal is to establish a new sub-discipline in the broader field of neuroethology that we refer to as “Chemical Neuroethology”, linking the substantial work carried out by chemists on natural products with accelerating advances in neuroethology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced from www.theconecollector.com

Fig. 6

Adapted from (Safavi-Hemami et al. 2016)

Fig. 7

Similar content being viewed by others

References

  • Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, Baker EN, Harding MM, Hodkin DC, Rimmer B, Sheat S (1969) Structure of rhombohedral 2 zinc insulin crystals. Nature 224:491–495. doi:10.1038/224491a0

    Article  CAS  Google Scholar 

  • Aman JW, Imperial JS, Ueberheide B, Zhang M-M, Aguilar M, Taylor D, Watkins M, Yoshikami D, Showers-Corneli P, Safavi-Hemami H, Biggs J, Teichert RW, Olivera BM (2015) Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus. Proc Natl Acad Sci USA 112:5087–5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barghi N, Concepcion GP, Olivera BM, Lluisma AO (2015) Comparison of the venom peptides and their expression in closely related conus species: insights into adaptive post-speciation evolution of conus exogenomes. Genome Biol Evol 7(6):1797–1814. doi:10.1093/gbe/evv109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayrhuber M, Vijayan V, Ferber M, Graf R, Korukottu J (2005) Conkunitzin-S1 is the first member of a new Kunitz-type neurotoxin family. Structural and functional characterization. J Biol Chem 280:23766–23770

    Article  CAS  PubMed  Google Scholar 

  • Biass D, Dutertre S, Gerbault A, Menou J-L, Offord R, Favreau P, Stocklin R (2009) Comparative proteomic study of the venom of the piscivorous cone snail Conus consors. J Proteom 72(2):210–218

    Article  CAS  Google Scholar 

  • Bingham J-P, Baker MR, Chun JB (2012) Analysis of a cone snail’s killer cocktail—the milked venom of Conus geographus(). Toxicon Off J Int Soc Toxinol 60(6):1166–1170. doi:10.1016/j.toxicon.2012.07.014

    Article  CAS  Google Scholar 

  • Blumenthal S (2010) From insulin and insulin-like activity to the insulin superfamily of growth-promoting peptides: a 20th-century odyssey. Perspect Biol Med 53(4):491–508. doi:10.1353/pbm.2010.0001

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Duda TFJ (2012) Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol 29(8):2019–2029

    Article  CAS  PubMed  Google Scholar 

  • Chun JB, Baker MR, Kim DH, Leroy M, Toribo P, Bingham JP (2012) Cone snail milked venom dynamics—a quantitative study of Conus purpurascens. Toxicon 60(1):83–94. doi:10.1016/j.toxicon.2012.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158(2):412–421. doi:10.1016/j.cell.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig AG, Norberg T, Griffin D, Hoeger C, Akhtar M, Schmidt K, Low W, Dykert J, Richelson E, Navarro V, Mazella J, Watkins M, Hillyard D, Imperial J, Cruz LJ, Olivera BM (1999) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 274:13752–13759

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Corpuz G, Olivera BM (1978a) Mating, spawning, development and feeding habits of conus geographus in captivity. Nautilus 92(4):150–152

    Google Scholar 

  • Cruz LJ, Gray WR, Olivera BM (1978b) Purification and properties of a myotoxin from Conus geographus venom. Arch Biochem Biophys 190:539–548

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L, Yoshikami D, Moczydlowski E (1985) Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J Biol Chem 260:9280–9288

    CAS  PubMed  Google Scholar 

  • Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33(7):496–499. doi:10.1007/s10295-006-0112-5

    Article  CAS  PubMed  Google Scholar 

  • Donia MS, Cimermancic P, Schulze CJ, Wieland Brown LC, Martin J, Mitreva M, Clardy J, Linington RG, Fischbach MA (2014) A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell 158(6):1402–1414. doi:10.1016/j.cell.2014.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda TF, Palumbi SR (1999) Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. Proc Natl Acad Sci 96:6820–6823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutertre S, Biass D, Stöcklin R, Favreau P (2010) Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. Toxicon 55(8):1453–1462. doi:10.1016/j.toxicon.2010.02.025

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin A-H, Alewood PF, Lewis RJ (2014a) Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon 91:135–144. doi:10.1016/j.toxicon.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  • Dutertre S, Jin A-H, Vetter I, Hamilton B, Sunagar K, Lavergne V, Dutertre V, Fry BG, Antunes A, Venter DJ, Alewood PF, Lewis RJ (2014b) Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat Commun 5:3521. doi:10.1038/ncomms4521

    PubMed  PubMed Central  Google Scholar 

  • Ebberink RHM, Smit AB, Van Minnen J (1989) The insulin family: evolution of structure and function in vertebrates and invertebrates. Biol Bull 177:176–182

    Article  CAS  Google Scholar 

  • England LJ, Gulyas J (1998) Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails (vol 281, pg 575, 1998). Science 282(5388):417

    CAS  Google Scholar 

  • Fainzilber M, Gordon D, Hasson A, Spira ME, Zlotkin E (1991) Mollusc-specific toxins from the venom of Conus textile neovicarius. Eur J Biochem 202:589–595

    Article  CAS  PubMed  Google Scholar 

  • Floyd PD, Li L, Rubakhin SS, Sweedler JV, Horn CC, Kupfermann I, Alexeeva VY, Ellis TA, Dembrow NC, Weiss KR, Vilim FS (1999) Insulin prohormone processing, distribution, and relation to metabolism in Aplysia californica. J Neurosci Off J Soc Neurosci 19(18):7732–7741

    CAS  Google Scholar 

  • Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28(2):400–410. doi:10.1039/c0np00034e

    Article  CAS  PubMed  Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (1999) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1(1):33–43

    CAS  PubMed  Google Scholar 

  • Himaya SWA, Jin A-H, Dutertre S, Giacomotto J, Mohialdeen H, Vetter I, Alewood PF, Lewis RJ (2015) Comparative venomics reveals the complex prey capture strategy of the piscivorous cone snail Conus catus. J Proteome Res 14(10):4372–4381. doi:10.1021/acs.jproteome.5b00630

    Article  CAS  PubMed  Google Scholar 

  • Hopkins C, Grilley M, Miller C, Shon KJ, Cruz LJ, Gray WR, Dykert J, Rivier J, Yoshikami D, Olivera BM (1995) A new family of Conus peptides targeted to the nicotinic acetylcholine receptor. J Biol Chem 270:22361–22367

    Article  CAS  PubMed  Google Scholar 

  • Jakubowski JA, Kelley WP, Sweedler JV, Gilly WF, Schulz JR (2005) Intraspecific variation of venom injected by fish-hunting Conus snails. J Exp Biol 208(15):2873

    Article  CAS  PubMed  Google Scholar 

  • Jin A-H, Israel MR, Inserra MC, Smith JJ, Lewis RJ, Alewood PF, Vetter I, Dutertre S (2015) δ-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proc R Soc Biol Sci 282(1811). doi:10.1098/rspb.2015.0817

  • Johnson C, Stablum W (1971) Observations on feeding behavior of Conus geographus (Gastropoda:Toxoglossa). Pac Sci 25(1):109–111. doi:http://hdl.handle.net/10125/6112

  • Kelley WP, Schulz JR, Jakubowski JA, Gilly WF, Sweedler JV (2006) Two toxins from conus striatus that individually induce tetanic paralysis. Biochemistry 45(47):14212–14222. doi:10.1021/bi061485s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohn AJ (2014) Conus of the Southeastern United States and Caribbean. Princeton University Press, Princeton

    Book  Google Scholar 

  • Kohn AJ (1985) Evolutionary ecology of Conus on Indo-Pacific coral reefs. In: Proceedings of the fifth international Coral Reef congress, 27 May 1985, vol Symposia and Seminars, pp 139–144

  • Leipold E, Hansel A, Olivera BM, Terlau H, Heinemann SH (2005) Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS Lett 579:3881–3884

    Article  CAS  PubMed  Google Scholar 

  • McIntosh JM, Foderaro TA, Li W, Ireland CM, Olivera BM (1993) Presence of serotonin in the venom of Conus imperialis. Toxicon 31(12):1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Mena EE, Gullak MF, Pagnozzi MJ, Richter KE, Rivier J, Cruz LJ, Olivera BM (1990) Conantokin-G: a novel peptide antagonist to the N-methyl-d-aspartic acid (NMDA) receptor. Neurosci Lett 118(2):241–244

    Article  CAS  PubMed  Google Scholar 

  • Menting JG, Gajewiak J, MacRaild CA, Chou DH, Disotuar MM, Smith NA, Miller C, Erchegyi J, Rivier JE, Olivera BM, Forbes BE, Smith BJ, Norton RS, Safavi-Hemami H, Lawrence MC (2016) A minimized human insulin-receptor-binding motif revealed in a Conus geographus venom insulin. Nat Struct Mol Biol. doi:10.1038/nsmb.3292

    PubMed  Google Scholar 

  • Neves JL, Lin Z, Imperial JS, Antunes A, Vasconcelos V, Olivera BM, Schmidt EW (2015) Small molecules in the cone snail arsenal. Org Lett 17(20):4933–4935. doi:10.1021/acs.orglett.5b02389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen DB, Dykert J, Rivier JE, McIntosh JM (1994) Isolation of Lys-conopressin-G from the venom of the worm-hunting snail, Conus imperialis. Toxicon 32(7):845–848

    Article  CAS  PubMed  Google Scholar 

  • Nybakken J (1967) Preliminary observations on the feeding behavior of Conus purpurascens Broderip, 1833. Veliger 10:55–57

    Google Scholar 

  • Olivera BM (1997a) Conus Venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8:2101–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera BM (1997b) E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol Biol Cell 8(11):2101–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivera BM, McIntosh JM, Cruz LJ, Luque FA, Gray WR (1984) Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23:5087–5090

    Article  CAS  PubMed  Google Scholar 

  • Olivera BM, Seger J, Horvath MP, Fedosov AE (2015) Prey-capture strategies of fish-hunting cone snails: behavior, neurobiology and evolution. Brain Behav Evol 86(1):58–74. doi:10.1159/000438449

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliverio M, Modica MV (2010) Relationships of the haematophagous marine snail Colubraria (Rachiglossa: Colubrariidae), within the neogastropod phylogenetic framework. Zool J Linn Soc 158:779–800

    Article  Google Scholar 

  • Puillandre N, Bouchet P, Duda TF Jr, Kauferstein S, Kohn AJ, Olivera BM, Watkins M, Meyer C (2014) Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). Mol Phylogenet Evol 78:290–303. doi:10.1016/j.ympev.2014.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramilo CA, Zafaralla GC, Nadasdi L, Hammerland LG, Yoshikami D, Gray WR, Kristipati R, Ramachandran J, Miljanich G, Olivera BM (1992) Novel alpha- and omega-conotoxins from Conus striatus venom. Biochemistry 31:9919–9926

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AM, Dutertre S, Lewis RJ, Marí F (2015) Intraspecific variations in Conus purpurascens injected venom using LC/MALDI-TOF-MS and LC-ESI-TripleTOF-MS. Anal Bioanal Chem 407(20):6105–6116. doi:10.1007/s00216-015-8787-y

    Article  CAS  PubMed  Google Scholar 

  • Safavi-Hemami H, Gajewiak J, Karanth S, Robinson SD, Ueberheide B, Douglass AD, Schlegel A, Imperial JS, Watkins M, Bandyopadhyay PK, Yandell M, Li Q, Purcell AW, Norton RS, Ellgaard L, Olivera BM (2015) Specialized insulin is used for chemical warfare by fish-hunting cone snails. Proc Natl Acad Sci USA 112(6):1743–1748. doi:10.1073/pnas.1423857112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Showers Corneli P, Seger J, Yandell M, Olivera BM (2016) Venom insulins of cone snails diversify rapidly and track prey taxa. Mol Biol Evol. doi:10.1093/molbev/msw174

    PubMed  PubMed Central  Google Scholar 

  • Sato K, Park NG, Kohno T, Maeda T, Kim JI, Kato R, Takahashi M (1993) Role of basic residues for the binding of omega-conotoxin GVIA to N-type calcium channels. Biochem Biophys Res Commun 194(3):1292–1296. doi:10.1006/bbrc.1993.1964

    Article  CAS  PubMed  Google Scholar 

  • Schulz JR, Norton AG, Gilly WF (2004) The projectile tooth of a fish-hunting cone snail: Conus catus injects venom into fish prey using a high-speed ballistic mechanism. Biol Bull 207:77–79

    Article  PubMed  Google Scholar 

  • Shabanpoor F, Separovic F, Wade JD (2009) The human insulin superfamily of polypeptide hormones. Vitam Horm 80:1–31. doi:10.1016/s0083-6729(08)00601-8

    Article  CAS  PubMed  Google Scholar 

  • Sharp KH, Davidson SK, Haygood MG (2007) Localization of ‘Candidatus Endobugula sertula’ and the bryostatins throughout the life cycle of the bryozoan Bugula neritina. ISME J 1(8):693–702. doi:10.1038/ismej.2007.78

    Article  PubMed  Google Scholar 

  • Smit AB, van Kesteren RE, Li KW, Van Minnen J, Spijker S, Van Heerikhuizen H, Geraerts WP (1998) Towards understanding the role of insulin in the brain: lessons from insulin-related signaling systems in the invertebrate brain. Prog Neurobiol 54(1):35–54

    Article  CAS  PubMed  Google Scholar 

  • Sunagar K, Moran Y (2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet 11(10):e1005596. doi:10.1371/journal.pgen.1005596

    Article  PubMed  PubMed Central  Google Scholar 

  • Teichert RW, López-Vera E, Gulyas J, Watkins M, Rivier J, Olivera BM (2006) Definition and characterization of the short αA-conotoxins: a single residue determines dissociation kinetics from the fetal muscle nicotinic acetylcholine receptor. Biochemistry 45(4):1304–1312. doi:10.1021/bi052016d

    Article  CAS  PubMed  Google Scholar 

  • Terlau H, Shon KJ, Grilley M, Stocker M, Stuhmer W, Olivera BM (1996) Strategy for rapid immobilization of prey by a fish-hunting marine snail. Nature 381(6578):148–151. doi:10.1038/381148a0

    Article  CAS  PubMed  Google Scholar 

  • Terlau H, Jacobson R, Shon KJ, Stocker M, Stuhmer W, Olivera BM (1997) K-conotoxin PVIIa, a Conus peptide targeted to potassium channels H. Pflugs Arch Eur J Physiol 433(6):O103

    Google Scholar 

  • Thompson JE (1985) Exudation of biologically-active metabolites in the sponge Aplysina fistularis—I. Biol Evid Mar Biol 88(1):23–26. doi:10.1007/BF00393039

    Article  CAS  Google Scholar 

  • Tianero MD, Pierce E, Raghuraman S, Sardar D, McIntosh JA, Heemstra JR, Schonrock Z, Covington BC, Maschek JA, Cox JE, Bachmann BO, Olivera BM, Ruffner DE, Schmidt EW (2016) Metabolic model for diversity-generating biosynthesis. Proc Natl Acad Sci USA 113(7):1772–1777. doi:10.1073/pnas.1525438113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wagoner RM, Jacobsen RB, Olivera BM, Ireland CM (2003) Characterization and three-dimensional structure determination of psi-conotoxin Piiif, a novel noncompetitive antagonist of nicotinic acetylcholine receptors. Biochemistry 42:6353–6362

    Article  PubMed  Google Scholar 

  • Walker CS, Jensen S, Ellison M, Matta JA, Lee WY, Imperial JS, Duclos N, Brockie PJ, Madsen DM, Isaac JTR, Olivera B, Maricq AV (2009) A novel Conus snail polypeptide causes excitotoxicity by blocking desensitization of AMPA receptors. Curr Biol 19(11):900–908. doi:10.1016/j.cub.2009.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins M, Hillyard DR, Olivera BM (2006) Genes expressed in a turrid venom duct: divergence and similarity to conotoxins. J Mol Evol 62:247–256

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, Yoshikami D, Azam L, Gajewiak J, Olivera BM, Bulaj G, Zhang M-M (2011) mu-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci USA 108:10302–10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafaralla GC, Ramilo C, Gray WR, Karlstrom R, Olivera BM, Cruz LJ (1988) Phylogenetic specificity of cholinergic ligands: alpha-conotoxin SI. Biochemistry 27:7102–7105

    Article  CAS  PubMed  Google Scholar 

  • Zugasti-Cruz A, Maillo M, Lopez-Vera E, Falcon A, Heimer de la Cotera EP, Olivera BM, Aguilar MB (2006) Amino acid sequence and biological activity of a gamma-conotoxin-like peptide from the worm-hunting snail Conus austini. Peptides 27:506–511

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of the authors was supported by the National Institute of General Medical Science GM048677 (to BMO), Marie Curie Fellowship (to HS-H), Esther Fujimoto Memorial Fellowship (to SR), and by NIH U01TW008163 (to EWS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Safavi-Hemami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The model of Conus geographus behavior coordinated with envenomation described above comes from decades of study in multiple labs; a recent publication (Dutertre et al. 2014b) would modify this model. We believe that the interesting hypothesis proposed in this publication requires more experimental data; an explanation that rationalizes all of the present experimental observations is provided below.

The prey capture observations on Conus geographus described in the text above were based on hundreds of specimens, collected from various localities in the Philippines. These observations have been widely corroborated, including in a publicly accessible video (see C. geographus, Silent Assassin from the BBC that shows a freely moving Conus geographus engulfing an enormous fish without extending its proboscis. In this video, after being totally engulfed, the fish struggles and jerks, and then becomes paralyzed, presumably in response to the envenomating sting. See https://www.youtube.com/watch?v=FYh2zeAsRXY). However, a diversity of foraging behavior has been reported for Conus geographus from some Australian localities; as documented by Bingham and co-workers for Australian specimens (Bingham et al. 2012). Even in this survey of Australian specimens, most Conus geographus engulf their prey before envenomation, but a minority (5/27) were observed to extend their proboscis in the presence of prey. Behavioral divergence between different populations of conspecific cone snails is clearly a topic that needs to be systematically explored.

Based on their study of the minor fraction of Australian Conus geographus that extend their proboscis when presented with fish prey, Dutertre, Lewis and coworkers proposed that Conus geographus could secrete two types of venom, one for predation and another exclusively for defense. In essence, the predation venom components were equivalent to the nirvana cabal described in this review, while the defensive venom contained motor cabal components. An alternative explanation for the observations on the behavioral cadre of Conus geographus that inject venom before completely engulfing their prey is that motor cabal components are used both for prey capture, as well as for defense. This is supported by findings of Dutertre et al. (2014a, b) on the presence of motor cabal toxins (μ-GIIIA and ω-GVIA) in the defense-evoked venom and a study by Bingham et al. (2012) that showed that these compounds were also present in the predatory venom of Conus geographus. The ecological conditions of the Australian Conus geographus cadre presumably make direct injection of nirvana cabal components more effective than release into the water (but would therefore result in the snail only being able to capture one fish prey per foraging event). Conus geographus specimens from the Philippines can be fed fish sequentially in aquaria (which is not true for other fish-hunting Conus species), and after being fed one or two fish, if the snail is presented with another fish prey, it opens its rostrum and totally paralyzed fish are visible within the open rostrum. These observations are consistent with the snail being able to inject multiple prey sequentially, and suggest that paralytic components of venom are injected into each engulfed fish. In contrast, when the snail is threatened, it can clearly inject a larger amount of venom (we have observed that if the shell of a Conus geographus specimen is being broken, it will extend its proboscis and spray out several hundred microliters of venom). Thus, several experimental questions should be addressed for the Australian Conus geographus with the unusual behavior. Do these snails sting fish prey a second time after they are engulfed? Does the defense-evoked venom changes composition when the snails encounter a natrual predator? These are experimental issues that need to be resolved to elucidate the role of motor cabal components. A fundamental conceptual issue is that there is no evidence that fish are the main predators—why would venom components purely evolved for defense be so specific for the vertebrate neuromuscular junction; this suggests that selection pressure was based on the prey type.

Professor J.P. Bingham, University of Hawaii, is probably the most knowledgeable authority on the ecology of Conus geographus in Australia, and has kindly provided a potential rationale for the divergence in behavior observed in some Australian specimens. C. geographus that extend their proboscis towards fish prey are enriched in the Boult Reefs at the Great Barrier Reef in which staghorn coral is prevalent (Bingham et al. 2012). This may be an environment in which releasing venom components and engulfing prey is a less effective strategy, selecting for behavior in which the snails directly inject nirvana cabal venom components into potential prey. This possibility is made more likely by our unpublished observations that certain lineages of fish-hunting cone snails that do appear to have nirvana cabal-like components inject their prey twice, the first injection resulting in quiescent (but not paralyzed) fish.

The diversity of prey capture behavior documented above is presumably reflected in variability in venom composition. The striking interspecific divergence in the venom components of different Conus species is well documented, but the extent of intraspecific divergence is less well studied. However, a number of recent studies have been carried out, both on Conus geographus and other fish-hunting cone snails which allow a comparison between venoms of different individuals of the same species; these reports suggest considerable intraspecific variation in venom components (Dutertre et al. 2010, 2014b; Himaya et al. 2015; Rodriguez et al. 2015) when these analyses are carried out on milked venom of the same individual (Biass et al. 2009); the results also suggest that even within a single individual, there can be variation in venom components as a function of time. It is clear from the diversity of ecological responses observed in Conus geographus and some of the new ideas about the roles of its venoms in nature that much remains to be learned about the behavior of these molluscs, even from the best studied species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivera, B.M., Raghuraman, S., Schmidt, E.W. et al. Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study. J Comp Physiol A 203, 717–735 (2017). https://doi.org/10.1007/s00359-017-1183-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1183-7

Keywords

Navigation