Skip to main content
Log in

The magnetic map sense and its use in fine-tuning the migration programme of birds

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The Earth’s magnetic field is one of several natural cues, which migratory birds can use to derive directional (“compass”) information for orientation on their biannual migratory journeys. Moreover, magnetic field effects on prominent aspects of the migratory programme of birds, such as migratory restlessness behaviour, fuel deposition and directional orientation, implicate that geomagnetic information can also be used to derive positional (“map”) information. While the magnetic “compass” in migratory birds is likely to be based on radical pair-forming molecules embedded in their visual system, the sensory correlates underlying a magnetic “map” sense currently remain elusive. Behavioural, physiological and neurobiological findings indicate that the sensor is most likely innervated by the ophthalmic branch of the trigeminal nerve and based on magnetic iron particles. Information from this unknown sensor is neither necessary nor sufficient for a functional magnetic compass, but instead could contribute important components of a multifactorial “map” for global positioning. Positional information could allow migratory birds to make vitally important dynamic adaptations of their migratory programme at any relevant point during their journeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bairlein F (1991) Body mass of garden warblers (Sylvia borin) on migration: a review of field data. Vogelwarte 36:48–61

    Google Scholar 

  • Bairlein F (2003) Large-scale networks in bird research in Europe: pitfalls and prospects. Avian Sci 3:49–63

    Google Scholar 

  • Bakken V, Runde O, Tjorve E (2006) Norsk ringmerkings atlas (Vol 2 duer-spurvefugler). Stavanger Museum, Norway

    Google Scholar 

  • Beason R, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    CAS  PubMed  Google Scholar 

  • Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca Pallas). Acta XIX. Congressus Internationalis Ornithologica. Ottawa 1986:1955–62

  • Benhamou S (1997) On systems of reference involved in spatial memory. Behav Process 40:149–63

    Article  CAS  Google Scholar 

  • Benhamou (2003) Bicoordinate navigation based on non-orthogonal gradient fields. J Theor Biol 225:235–39

    Article  PubMed  Google Scholar 

  • Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. IBIS 115:594–9

    Article  Google Scholar 

  • Berthold P (1974) Circannuale periodik bei grasmücken (Sylvia).III: periodik der mauser, der nachtunruhe und des körpergewichtes bei mediterranen arten mit unterschiedlichem zugverhalten. J Ornithol 115:251–272

    Article  Google Scholar 

  • Berthold P (1988a) Wegzugbeginn und einsetzen der zugunruhe bei 19 vogelpopulationen—eine vergleichende untersuchung. J Ornithol 131:217–222

    Google Scholar 

  • Berthold P (1988b) The control of migration in european warblers. Acta XIX. Congressus Internationalis Ornithologica. Ottawa 1986:215–49

  • Berthold P (1991) Orientation in birds. Birkhäuser, Basel

    Book  Google Scholar 

  • Berthold P, Querner U (1981) Genetic basis of migratory behaviour in european warblers. Science 212:77–79

    Article  CAS  PubMed  Google Scholar 

  • Berthold P, Gwinner E, Klein H, Westrich P (1972) Beziehung zwischen zugunruhe und zugablauf bei garten- und mönchsgrasmücken (Sylvia borin und S. atricapilla). Z Tierpsychol 30:26–32

    Article  Google Scholar 

  • Bolte P, Bleibaum F, Einwich A, Günther A, Liedvogel M, Heyers D, Depping A, Wöhlbrand L, Rabus R, Janssen-Bienhold U, Mouritsen H (2016) Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLoS One 11:e0147819

    Article  PubMed Central  PubMed  Google Scholar 

  • Boström JE, Fransson T, Henshaw I, Jakobsson S, Kullberg C, Åkesson S (2010) Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behav Ecol Sociobiol 64:1725–1732

    Article  Google Scholar 

  • Boström JE, Åkesson S, Alerstam T (2012) Where on earth can animals use a geomagnetic bicoordinate map for navigation? Ecography 35:1039–1047

    Article  Google Scholar 

  • Bottjer SW, Arnold AP (1982) Afferent neurons in the hypoglossal nerve of the zebra finch (Poephila guttata): localization with horseradish peroxidase. J Comp Neurol 210:190–197

    Article  CAS  PubMed  Google Scholar 

  • Bout RG, Dubbeldam JL (1985) An HRP study of the central connections of the facial nerve in the mallard (Anas platyrhynchos L.). Acta Morphol Neerl Scand 23:181–93

    CAS  PubMed  Google Scholar 

  • Bulte M, Bairlein F (2013) Endogenous control of migratory behaviour in alaskan northern wheatears. J Ornithol 154:567–570

    Article  Google Scholar 

  • Bulte M, Heyers D, Mouritsen H, Bairlein F (2017) Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J Avian Biol 48:75–82

    Article  Google Scholar 

  • Chernetsov N (2017) Compass systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. doi:10.1007/s00359-016-1140-x

    PubMed  Google Scholar 

  • Chernetsov N, Kishkinev D, Gashkov S, Kosarev V, Bolshakov CV (2008a) Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from siberia implies a detour around central Asia. Anim Behav 75:539–545

    Article  Google Scholar 

  • Chernetsov N, Kishkinev D, Mouritsen H (2008b) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190

    Article  CAS  PubMed  Google Scholar 

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    Article  CAS  PubMed  Google Scholar 

  • Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migrating passerine: the northern wheatear Oenanthe oenanthe. Ardea 94:593–605

    Google Scholar 

  • Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol $$$Sociobiol 62:1069–78

    Article  Google Scholar 

  • Dubbeldam JL (1980) Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynchos L. II. morphology of the principal sensory nucleus. J Comp Neurol 191:557–571

    Article  CAS  PubMed  Google Scholar 

  • Dubbeldam JL, Karten HJ, Menken SB (1976) Central projections of the chorda tympani nerve in the mallard, Anas platyrhynchos L. J Comp Neurol 170:415–420

    Article  CAS  PubMed  Google Scholar 

  • Dubbeldam JL, Brus ER, Menken SB, Zeilstra S (1979) The central projections of the glossopharyngeal and vagus ganglia in the mallard, Anas platyrhynchos L. J Comp Neurol 183:149–168

    Article  CAS  PubMed  Google Scholar 

  • Eikenaar C, Klinner T, Szostek KL, Bairlein F (2014) Migratory restlessness in captive individuals predicts actual departure in the wild. Biol Lett 10:20140154

    Article  PubMed Central  PubMed  Google Scholar 

  • Eikenaar C, Fritzsch A, Kämpfer S, Schmaljohann H (2016) Migratory restlessness increases and refuelling rate decreases over the spring migration season in northern wheatears. Anim Behav 112:75–81

    Article  Google Scholar 

  • Elbers D, Bulte M, Bairlein F, Mouritsen H, Heyers D (2017) Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe) J Comp Physiol A Neuroethol Sens Neural Behav Physiol. doi:10.1007/s00359-017-1167-7

  • Engels S, Hein CM, Lefeldt N, Prior H, Mouritsen H (2012) Night-migratory songbirds possess a magnetic compass in both eyes. PloS One 7:e43271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS One 5:9231

    Article  Google Scholar 

  • Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360

    Article  CAS  PubMed  Google Scholar 

  • Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineralbased magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften 94:631–642

    Article  CAS  PubMed  Google Scholar 

  • Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36

    Article  CAS  PubMed  Google Scholar 

  • Gwinner E (1990) Bird migration: physiology and ecophysiology. Springer, Berlin

    Book  Google Scholar 

  • Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    CAS  PubMed  Google Scholar 

  • Hein CM, Zapka M, Heyers D, Kutzschbauch S, Schneider NL, Mouritsen H (2010) Night-migratory garden warblers can orient with their magnetic compass using the left, the right or both eyes. J R Soc Interface 7(Suppl 2):S227–S233

    Article  PubMed  Google Scholar 

  • Hein CM, Engels S, Kishkinev D, Mouritsen H (2011) Robins have a magnetic compass in both eyes. Nature 471:E11

    Article  PubMed  Google Scholar 

  • Henshaw I, Fransson T, Jakobsson S, Kullberg C (2010) Geomagnetic field affects spring migratory direction in a long distance migrant. Behav Ecol Sociobiol 64:1317–1323

    Article  Google Scholar 

  • Heyers D, Manns M, Luksch H, Gűntűrkűn O, Mouritsen H (2007) A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PloS One 2:937

    Article  Google Scholar 

  • Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H (2010) Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proc Nat Acad Sci USA 107:9394–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holland RA (2010) Differenatial effects of magnetic pulses on the orientation of naturally migrating birds. J R Soc Interface 7:1617–1625

    Article  PubMed Central  PubMed  Google Scholar 

  • Holland RA (2014) True navigation in birds: from quantum physics to global migration. J Zool 293:1–15

    Article  Google Scholar 

  • Holland RA, Helm B (2013) A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 10:20121047

    Article  PubMed Central  PubMed  Google Scholar 

  • Hore PJ, Mouritsen H (2016) The radical pair mechanism of magnetoreception. Annu Rev Biophys 45:299–344

    Article  CAS  PubMed  Google Scholar 

  • Kattnig DR, Evans EW, Dejean V, Dodson CA, Wallace MI, Mackenzie SR, Timmel CR, Hore PJ (2016) Chemical amplification of magnetic field effects relevant to avian magnetoreception. Nat Chem 8:384–91

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:181–201

    Article  CAS  PubMed  Google Scholar 

  • Kishkinev D (2015) Sensory mechanisms of long-distance navigation in birds: a recent advance in the context of previous studies. J Ornithol 156:S145–S161

    Article  Google Scholar 

  • Kishkinev D, Chernetsov N, Mouritsen H (2010) A double clock or jetlag mechanism is unlikely to be involved in detection of east-west displacements in a long-distance avian migrant. Auk 127:773–780

    Article  Google Scholar 

  • Kishkinev D, Chernetsov N, Heyers D, Mouritsen H (2013) Migratory reed warblers need intact trigeminal nerves to compensate for a 1000 km displacement. PLoS One 8:e65847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kishkinev D, Chernetsov N, Pakhomov A, Heyers D, Mouritsen H (2015) Eurasian reed warblers compensate for virtual magnetic displacement. Curr Biol 25:R822–R824

    Article  CAS  PubMed  Google Scholar 

  • Kullberg C, Lind J, Fransson T, Jakobsson S, Valin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc Roy Soc B 270:373–8

    Article  Google Scholar 

  • Kullberg C, Henshaw I, Jakobson S, Johansson P, Fransson T (2007) Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc Roy Soc B 274:2145–51

    Article  Google Scholar 

  • Lefeldt N, Heyers D, Schneider NL, Engels S, Elbers D, Mouritsen H (2014) Magnetic field-driven induction of zenk in the trigeminal system of pigeons (Columba livia). J R Soc Interface 11:20140777

    Article  PubMed Central  PubMed  Google Scholar 

  • Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H (2007a) Lateralized activation of cluster n in the brains of migratory songbirds. Eur J Neurosci 25:1166–1173

    Article  PubMed Central  PubMed  Google Scholar 

  • Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H (2007b) Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS One 2:e1106

    Article  PubMed Central  PubMed  Google Scholar 

  • Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA 109:4774–4779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maggini I, Bairlein F (2010) Endogenous rhythms of seasonal migratory body mass change and nocturnal restlessness in different populations of northern wheatear Oenanthe oenanthe. J Biol Rhythms 25:268–276

    Article  PubMed  Google Scholar 

  • Mewaldt R (1964) California sparrows return from displacement to maryland. Science 146:941–942

    Article  CAS  PubMed  Google Scholar 

  • Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen H (1998) Compasses and orientational strategies of night migrating passerine birds. Odense University, Odense

    Google Scholar 

  • Mouritsen H (2003) Spatiotemporal orientation strategies of long-distance migrants. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 493–513

    Chapter  Google Scholar 

  • Mouritsen H (2012) Sensory biology: search for the compass needles. Nature 484:320–321

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen H (2013) The magnetic senses. In: Galizia G, Lledo PM (eds) Neurosciences-from molecule to behaviour: a university textbook. Springer, Berlin, pp 427–443

    Chapter  Google Scholar 

  • Mouritsen H (2015) Magnetoreception and its use for long-distance migration. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn Elsevier, Amsterdam, pp 113–33

    Chapter  Google Scholar 

  • Mouritsen H, Mouritsen O (2000) A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J Theor Biol 207:283–291

    Article  CAS  PubMed  Google Scholar 

  • Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED (2005) Night-vision brain area in migratory songbirds. Proc Natl Acad Sci USA 102:8339–8344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouritsen H, Heyers D, Güntürkün O (2016) The neural basis of long-distance navigation in birds. Annu Rev Physiol 78:133–154

    Article  CAS  PubMed  Google Scholar 

  • Mukhin A, Kosarev V, Ktitorov P (2005) Nocturnal life of songbirds well before migration. Proc Biol Sci 272:1535–1539

    Article  PubMed Central  PubMed  Google Scholar 

  • Munro U, Munro JA, Phillips JB, Wiltschko R, Wiltschko W (1997) Evidence for a magnetite-based navigational ‘map’ in birds. Naturwissenschaften 84:26–28

    Article  CAS  Google Scholar 

  • Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS One 6:e20091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niessner C, Gross JC, Denzau S, Peichl L, Fleissner G, Wiltschko W, Wiltschko R (2016) Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLoS One 11:e0150377

    Article  PubMed Central  PubMed  Google Scholar 

  • Perdeck AC (1958) Two types of orientation in migrating starlings, Sturnus vulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 46:1–37

    Google Scholar 

  • Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319

    Article  Google Scholar 

  • Piersma T, Pérez-Tris J, Mouritsen H, Bauchinger U, Bairlein F (2005) Is there a “migratory syndrome” common to all migrant birds? Ann N Y Acad Sci 1046:282–293

    Article  PubMed  Google Scholar 

  • Rabøl J (1978) One-direction orientation versus goal area navigation in migratory birds. Oikos 30:216–223

    Article  Google Scholar 

  • Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support in migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  • Schmaljohann H, Kämpfer S, Fritzsch A, Kima R, Eikenaar C (2015) Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds. Behav Ecol Sociobiol 69:909–914

    Article  Google Scholar 

  • Schwarze S, Steenken F, Thiele N, Kobylkov D, Lefeldt N, Dreyer D, Schneider NL, Mouritsen H (2016) Migratory blackcaps can use their magnetic compass at 5 degrees inclination, but are completely random at 0 degrees inclination. Sci Rep 6:33805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thorup KT, Bisson IA, Bowlin MS, Holland RA, Wingfield JC, Ramenofsky M, Wikelski M (2007) Evidence for a navigational map stretching across the continental u.s. in a migratory songbird. Proc Natl Acad Sci USA 104:18115–18119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370

    CAS  PubMed  Google Scholar 

  • Treiber CD, Salzer M, Breuss M, Ushakova L, Lauwers M, Edelman N, Keays DA (2013) High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Commun Integr Biol 6:e24859

    Article  PubMed Central  PubMed  Google Scholar 

  • Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205:1027–1029

    Article  CAS  PubMed  Google Scholar 

  • Wild JM (1981) Identification and localization of the motor nuclei and sensory projections of the glossopharyngeal, vagus, and hypoglossal nerves of the cockatoo (Cacatua roseicapilla), Cacatuidae. J Comp Neurol 203:351–377

    Article  CAS  PubMed  Google Scholar 

  • Wild JM (1990) Peripheral and central terminations of hypoglossal afferents innervating lingual tactile mechanoreceptor complexes in fringillidae. J Comp Neurol 298:157–171

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Zeigler HP (1996) Central projections and somatotopic organisation of trigeminal primary afferents in pigeon (Columba livia). J Comp Neurol 368:136–152

    Article  CAS  PubMed  Google Scholar 

  • Wild JM, Kubke MF, Carr CE (2001) Tonotopic and somatotopic representation in the nucleus basalis of the barn owl, Tyto alba. Brain Behav Evol 57:39–62

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of migratory birds. Science 176:62–64

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W, Wiltschko R (1992) Migratory orientation: magnetic compass orientation of garden warblers (Sylvia borin) after a simulated crossing of the magnetic equator. Ethology 91:70–74

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (2013) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199:89–98

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (2009) Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc Biol Sci 276:2227–2232

    Article  PubMed Central  PubMed  Google Scholar 

  • Yohannes E, Biebach H, Nikolaus G, Pearson DJ (2009) Passerine migration strategies and body mass variation along geographic sectors across east africa, the middle east and the arabian peninsula. J Ornithol 150:369–381

    Article  Google Scholar 

  • Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Zapka M, Heyers D, Liedvogel M, Jarvis ED, Mouritsen H (2010) Night-time neuronal activation of cluster n in a day- and night-migrating songbird. Eur J Neurosci 32:619–624

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Generous financial support was provided by the VolkswagenStiftung (Lichtenberg Professorship to HM), the Air Force Office of Scientific Research (Air Force Materiel Command, USAF award no. FA9550-14-1-0095 to HM) and the Deutsche Forschungsgemeinschaft (DFG; BA816/15-4 to FB; MO1408/1-2 and GRK1885 to HM; HE6221/1-1 to DH). DH, HM and FB designed the study; DH, DE and HM wrote the first draft of the manuscript, which all authors commented on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Heyers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heyers, D., Elbers, D., Bulte, M. et al. The magnetic map sense and its use in fine-tuning the migration programme of birds. J Comp Physiol A 203, 491–497 (2017). https://doi.org/10.1007/s00359-017-1164-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1164-x

Keywords

Navigation