Journal of Comparative Physiology A

, Volume 202, Issue 12, pp 869–877 | Cite as

Mathematical analysis of the homing flights of pigeons based on GPS tracks

  • Ingo SchiffnerEmail author
  • Susanne Denzau
  • Dennis Gehring
  • Roswitha Wiltschko
Original Paper


To analyse the effect of magnetic and olfactory deprivation on the homing flight of pigeons, we released birds from a familiar site with either their upper beak or their nostrils anaesthetized. The tracks were analysed by time lag embedding to calculate the short-term correlation dimension, a variable that reflects the degrees of freedom and thus the number of factors involved in a system. We found that higher natural fluctuations in the earth’s magnetic field characterized by A P-indices of 8 and above caused a reduction of the correlation dimension of the control birds. We thus separated the data into two groups according to whether they were recorded on magnetically quiet days or on days with higher magnetic fluctuations. Anaesthetizing the upper beak had no significant effect. Making pigeons anosmic reduced the correlation dimension on magnetically quiet days, but did not cause any reduction on days with higher fluctuations. Altogether, our data suggest an involvement of magnetic cues and olfactory factors during the homing flight and point to a robust, multi-factorial map.


Homing pigeons Magnetic navigation Olfactory input Correlation dimension GPS tracks 



The Ap-indices were provided by the National Oceanic and Atmospheric Administration (Boulder, Colorado). The experiments were performed in accordance with the rules and regulations of animal welfare in Germany.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.


Our work was supported by the Deutsche Forschungsgemeinschaft (WI 988/7-2, grant to R.W).

Supplementary material

359_2016_1127_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 31 kb)


  1. Beason RC, Wiltschko W (2015) Cues indicating location in pigeon navigation. J Comp Physiol A 201:961–967CrossRefGoogle Scholar
  2. Beason RC, Wiltschko R, Wiltschko W (1997) Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114:405–415CrossRefGoogle Scholar
  3. Benvenuti S, Fiaschi V (1983) Pigeon homing: combined effect of olfactory deprivation and visual impairment. Comp Biochem Physiol 76A:719–725CrossRefGoogle Scholar
  4. Chelazzi C, Pardi L (1972) Experiments on the homing behavior of caged pigeons. Monit Zool Ital 6:11–16Google Scholar
  5. Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B 274:1153–1158CrossRefPubMedPubMedCentralGoogle Scholar
  6. Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyer D, Wellenreuther G, Fleißner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5:e9231CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360CrossRefPubMedGoogle Scholar
  8. Gagliardo A (2013) Forty years of olfactory navigation in birds. J Exp Biol 216:2165–2171CrossRefPubMedGoogle Scholar
  9. Gagliardo A, Ioalè P, Filannino C, Wikelski M (2011) Homing pigeons only navigate in air with intact environmental odours: a test of the olfactory activation hypothesis with GPS-loggers. PLoS ONE 6:e22385CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gagliardo A, Pollonara E, Wikelski M (2016) Pigeon navigation: exposure to environmental odours prior to release is sufficient for homeward orientation, but not for homing. J Exp Biol 219:2475–2480CrossRefPubMedGoogle Scholar
  11. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349CrossRefGoogle Scholar
  12. Hitchcock HB (1952) Airplane observations of homing pigeons. Proc Am Philos Soc 96:270–289Google Scholar
  13. Holland R, Filannino C, Gagliardo A (2013) A magnetic pulse does not affect homing pigeon navigation: a GPS tracking experiments. J Exp Biol 216:2192–2200CrossRefPubMedGoogle Scholar
  14. Jandacka P, Burda H, Pistora J (2014) Magnetically induced behavior of ferritin corpuscles in avian ears: can cuticulosomes function as magnetosomes? J R Soc Interface 12:20141087CrossRefGoogle Scholar
  15. Jorge PE, Marques AE, Phillips JB (2009) Activational rather than navigational effects of odors on young pigeon homing. Curr Biol 19:650–654CrossRefPubMedGoogle Scholar
  16. Jorge PE, Marques AE, Phillips JB (2010) Activational effects of odours on avian navigation. Proc R Soc B 277:45–49CrossRefPubMedGoogle Scholar
  17. Jorge PE, Phillips JN, Goncalves A, Marques PAM, Nemec P (2014) Odours stimulate neuronal activity in the dorsolateral area of the hippocampal formation during path integration. Proc R Soc B 281:20140025CrossRefPubMedPubMedCentralGoogle Scholar
  18. Keeton WT (1974) The orientational and navigational basis of homing in birds. Adv Study Behav 5:47–132CrossRefGoogle Scholar
  19. Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuations in the earth’s magnetic field influence pigeon orientation. J Comp Physiol 95:95–103CrossRefGoogle Scholar
  20. Kiepenheuer J (1982) The effect of magnetic anomalies on the homing behaviour of pigeons. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Berlin, pp 120–128CrossRefGoogle Scholar
  21. Kowalski U (1974) Das Richtungsverhalten verfrachteter Brietauben (Columba livia) im Orientierungskäfig. J Ornithol 135:17–35CrossRefGoogle Scholar
  22. Kowalski U, Wiltschko R, Füller E (1988) Normal fluctuations of the geomagnetic field may affect initial orientation in pigeons. J Comp Physiol 163:593–600CrossRefGoogle Scholar
  23. Kramer G (1953) Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? J Ornithol 94:201–219CrossRefGoogle Scholar
  24. Kramer G (1957) Experiments in bird orientation and their interpretation. Ibis 99:196–227CrossRefGoogle Scholar
  25. Lauwers M, Pichler P, Edelmann NB, Resch GP, Ushakova L, Salzer MC, Heyers D, Saunders M, Shaw J, Keays DA (2013) An iron-rich organelle in the cuticular plate of avian hair cells. Curr Biol 23:924–929CrossRefPubMedGoogle Scholar
  26. Lincoln JV (1967) Geomagnetic indices. In: Matsushita S, Cambell HW (eds) Physics of geomagnetic phenomena. Academic Press, London, pp 67–100CrossRefGoogle Scholar
  27. Mazzotto M, Nacci L, Gagliardo A (1999) Homeward orientation of pigeons confined in a circular arena. Behav Proc 46:217–225CrossRefGoogle Scholar
  28. Michener MC, Walcott C (1967) Homing of single pigeons—analysis of tracks. J Exp Biol 47:99–131PubMedGoogle Scholar
  29. Papi F (1986) Pigeon navigation: solved problems and open questions. Monit Zool Ital 20:471–517Google Scholar
  30. Papi F, Fiore L, Fiaschi V, Benvenuti S (1971) The influence of olfactory nerve section on the homing capacity of carrier pigeons. Monit Zool Ital 5:265–267Google Scholar
  31. Qin S, Yin H, Yang C, Dou Y, Liu Z, Zhang P, Yu H, Huang Y, Feng J, Hao J, Deng L, Yan X, Dong X, Zhao Z, Jiang T, Wang HW, Luo SJ, Xie C (2015) A magnetic protein biocompass. Nat Mater. doi: 10.1038/NMAT4484 PubMedGoogle Scholar
  32. Schiffner I, Wiltschko R (2009) Point of decision: when do pigeons decide to head home? Naturwissenschaften 96:251–258CrossRefPubMedGoogle Scholar
  33. Schiffner I, Wiltschko R (2011) Temporal fluctuations of the geomagnetic field affect pigeons’ entire flight. J Comp Physiol A 197:765–772CrossRefGoogle Scholar
  34. Schiffner I, Wiltschko R (2013) Development of the navigational system in homing pigeons: increase in complexity of the navigational map. J Exp Biol 216:2675–2681CrossRefPubMedGoogle Scholar
  35. Schiffner I, Wiltschko R (2014) Pigeon navigation: different routes lead to Frankfurt. PLoS ONE 9:e112439CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schiffner I, Baumeister J, Wiltschko R (2011a) Mathematical analysis of the navigational process in homing pigeons. J Theor Biol 291:42–46CrossRefPubMedGoogle Scholar
  37. Schiffner I, Fuhrmann P, Wiltschko R (2011b) Tracking pigeons in a magnetic anomaly and in magnetically “quiet” terrain. Naturwissenschaften 98:575–581CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schiffner I, Fuhrmann P, Wiltschko R (2013) Homing flights of pigeons in the Frankfurt region: the effect of distance and local experience. Anim Behav 86:291–307CrossRefGoogle Scholar
  39. Schiffner I, Siegmund B, Wiltschko R (2014) Following the sun: a mathematical analysis of the tracks of clock-shifted homing pigeons. J Exp Biol 217:2643–2649CrossRefPubMedGoogle Scholar
  40. Skinner JE (1994) Low-dimensional chaos in biological systems. Nat Biotechnol 12:596–600CrossRefGoogle Scholar
  41. Steiner I, Burgi C, Werffeli S, Dell’Omo G, Valenti P, Tröster G, Wolfe DP, Lipp HP (2000) A GPS logger and software for analysis of homing pigeons and small mammals. Physiol Behav 71:1–8CrossRefGoogle Scholar
  42. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, vol 898., lecture notes in mathematicsSpringer, Berlin, pp 366–381Google Scholar
  43. Treiber CD, Salzer MC, Riegler J, Edelmann N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484:367–370PubMedGoogle Scholar
  44. von Hünerbein K, Hamann HJ, Rüter E, Wiltschko W (2000) A GPS-based system for recording the flight paths of birds. Naturwissenschaften 87:278–279CrossRefGoogle Scholar
  45. Wagner G (1970) Verfolgung von Brieftauben im Helikopter. Rev Suisse Zool 77:39–60CrossRefGoogle Scholar
  46. Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin, pp 143–151CrossRefGoogle Scholar
  47. Walcott C (2005) Multi-modal orientation cues in homing pigeons. Integr Comp Biol 45:574–581CrossRefPubMedGoogle Scholar
  48. Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204CrossRefGoogle Scholar
  49. Wiltschko R, Wiltschko W (2013) The magnetite-based receptors in the beak of birds and their role in avian navigation. J Comp Physiol A 199:89–98CrossRefGoogle Scholar
  50. Wiltschko R, Wiltschko W (2014) Sensing magnetic directions in birds: radical pair processes involving cryptochrome. Biosensors 4:221–242CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wiltschko R, Wiltschko W (2015) Avian navigation: a combination of innate and learned mechanisms. Adv Study Behav 47:229–310CrossRefGoogle Scholar
  52. Wiltschko R, Schiffner I, Siegmund B (2007) Homing flights of pigeons over familiar terrain. Anim Behav 74:1229–1240CrossRefGoogle Scholar
  53. Wiltschko R, Schiffner I, Wiltschko W (2009) A strong magnetic anomaly affects pigeon navigation. J Exp Biol 212:2983–2990CrossRefPubMedGoogle Scholar
  54. Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010) The role of the magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:1534–1538CrossRefPubMedGoogle Scholar
  55. Wu LQ, Dickman JD (2011) Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr Biol 21:418–423CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wu LQ, Dickman JD (2012) Neural correlates of a magnetic sense. Science 336:1054–1057CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ingo Schiffner
    • 1
    • 2
    Email author
  • Susanne Denzau
    • 2
  • Dennis Gehring
    • 2
  • Roswitha Wiltschko
    • 2
  1. 1.Queensland Brain InstituteUniversity of QueenslandSt. LuciaAustralia
  2. 2.Fachbereich BiowissenschaftenGoethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations