Journal of Comparative Physiology A

, Volume 201, Issue 12, pp 1125–1135 | Cite as

Developmental plasticity in vision and behavior may help guppies overcome increased turbidity

  • Sean M. EhlmanEmail author
  • Benjamin A. Sandkam
  • Felix Breden
  • Andrew Sih
Original Paper


Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.


Developmental plasticity Opsin gene expression Poecilia reticulata Response to environmental change Turbidity 



We thank members of the Sih, Breden, and Fangue labs for help with experimental design, and L. McLellan and H. Chmura for offering insightful comments on manuscript drafts. Special thanks to C. Ghalambor, D. Broder, S. Fitzpatrick, and C. McGaw for help in the field, as well as to stellar undergraduates for help in the lab—K. Horng, C. Runyan, M. Marin, and K. Frey. We also acknowledge the Trinidad and Tobago Ministry of Food Production, Land and Marine Affairs, Fisheries Division for issuing a collection and export permit. We also thank number of people who graciously lent equipment: N. Fangue and R. Connon provided a turbidity meter, K. Weinersmith provided filming equipment, and W. Davidson and K Lubieniecki permitted use of their qPCR machine. Funding was provided to SME through an NSF GRF and through a Center for Population Biology student research grant. SME would also like to thank BS, N. Prior, and FB for their hospitality while visiting Simon Fraser University to conduct gene expression assays. All procedures involving animals were in accordance with the ethical standards of UC Davis’ IACUC committee (protocol #17569).

Supplementary material

359_2015_1041_MOESM1_ESM.pdf (45 kb)
Table 2 (supplementary material). Models and coefficients used to make inferences from the data for baseline activity. Estimates are expressed on the log-scale. p values <0.05 are in bold. (PDF 44 kb)
359_2015_1041_MOESM2_ESM.pdf (48 kb)
Table 3 (supplementary material). Models and coefficients used to make inferences from the data for anti-predator behaviors (activity, freezing time, and latency to move after exposure to a predator cue). The activity model is a log-linked generalized linear model; thus, estimates are expressed on the log-scale. Freezing time and latency to move after exposure to a predator cue use a Gaussian conditional function, and estimates are expressed on the measurement scale (units = seconds). p values <0.05 are in bold. (PDF 48 kb)
359_2015_1041_MOESM3_ESM.pdf (47 kb)
Table 4 (supplementary material). ANOVA results for proportional opsin expression and opsin expression relative to average housekeeping gene expression (Relative(hk)). P values <0.05 are in bold. (PDF 46 kb)


  1. Abrahams MV, Kattenfeld MG (1997) The role of turbidity as a constraint on predator-prey interactions in aquatic environments. Behav Ecol Sociobiol 40:169–174. doi: 10.1007/s002650050330 CrossRefGoogle Scholar
  2. Anstis S, Hutahajan P, Cavanagh P (1998) Optomotor test for wavelength sensitivity in guppyfish (Poecilia reticulata). Vision Res 38:45–53. doi: 10.1016/S0042-6989(97)00159-4 CrossRefPubMedGoogle Scholar
  3. Archer SN, Lythgoe JN (1990) The visual pigment basis for cone polymorphism in the guppy, Poecilia reticulata. Vision Res 30:225–233. doi: 10.1016/0042-6989(90)90038-M CrossRefPubMedGoogle Scholar
  4. Archer SN, Endler JA, Lythgoe JN, Partridge JC (1987) Visual pigment polymorphism in the guppy Poecilia reticulata. Vision Res 27:1243–1252. doi: 10.1016/0042-6989(87)90200-8 CrossRefPubMedGoogle Scholar
  5. Bates D, Maechler M, Bolker B and Walker S. 2014 lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7,
  6. Bolker BM (2015) Linear and generalized linear mixed models. In: Fox GA, Negrete-Yankelevich S, Sosa VJ (eds) Ecological statistics contemporary theory and application. pp 309–333Google Scholar
  7. Borner KK, Krause S, Mehner T, Uusi-Heikkilä S, Ramnarine IW, Krause J (2015) Turbidity affects social dynamics in Trinidadian guppies. Behav Ecol Sociobiol 69:645–651. doi: 10.1007/s00265-015-1875-3 CrossRefGoogle Scholar
  8. Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18:1540–1550CrossRefPubMedGoogle Scholar
  9. Chapman BB, Morrell LJ, Tosh CR, Krause J (2010) Behavioural consequences of sensory plasticity in guppies. Proc R Soc B 277:1395–1401. doi: 10.1098/rspb.2009.2055 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Charmantier A, McCleery RH, Cole LR et al (2008) Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320:800–803. doi: 10.1126/science.1157174 CrossRefPubMedGoogle Scholar
  11. Cole GL, Endler JA (2015) Artificial selection for food color preferences. Proc R Soc B 282:20143108. doi: 10.1098/rspb.2014.3108 CrossRefPubMedGoogle Scholar
  12. Cunnington GM, Fahrig L (2010) Plasticity in the vocalizations of anurans in response to traffic noise. Acta Oecol 36:463–470. doi: 10.1016/j.actao.2010.06.002 CrossRefGoogle Scholar
  13. Davies-Colley RJ, Smith DG (2001) Turbidity, suspended sediment, and water clarity: a review. J Am Water Resour Assoc 37:1085–1101. doi: 10.1111/j.1752-1688.2001.tb03624.x CrossRefGoogle Scholar
  14. De Robertis A, Ryer CH, Veloza A, Brodeur RD (2003) Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can J Fish Aquat Sci 60:1517–1526. doi: 10.1139/f03-123 CrossRefGoogle Scholar
  15. Derrington AM (2000) Vision: can color contribute to motion? Curr Biol 10:R268–R270. doi: 10.1016/S0960-9822(00)00403-6 CrossRefPubMedGoogle Scholar
  16. DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81CrossRefPubMedGoogle Scholar
  17. Dukas R (1998) Evolutionary ecology of learning. In: Dukas R (ed) Cognitive ecology: the evolutionary ecology of information processing and decision making. University of Chicago Press, Chicago, pp 129–174Google Scholar
  18. Engstrom-Ost J, Candolin U (2007) Human-induced water turbidity alters selection on sexual displays in sticklebacks. Behav Ecol 18:393–398. doi: 10.1093/beheco/arl097 CrossRefGoogle Scholar
  19. Ferrari MCO, Lysak KR, Chivers DP (2010) Turbidity as an ecological constraint on learned predator recognition and generalization in a prey fish. Anim Behav 79:515–519. doi: 10.1016/j.anbehav.2009.12.006 CrossRefGoogle Scholar
  20. Flamarique IN, Cheng CL, Bergstrom C, Reimchen TE (2013) Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. J Exp Biol 216:656–667. doi: 10.1242/jeb.078840 CrossRefPubMedGoogle Scholar
  21. Fuller RC, Claricoates KM (2011) Rapid light-induced shifts in opsin expression: finding new opsins, discerning mechanisms of change, and implications for visual sensitivity. Mol Ecol 20:3321–3335. doi: 10.1111/j.1365-294X.2011.05180.x CrossRefPubMedGoogle Scholar
  22. Fuller RC, Carleton KL, Fadool JM et al (2004) Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A 190:147–154. doi: 10.1007/s00359-003-0478-z CrossRefGoogle Scholar
  23. Gardner MB (1981) Effects of turbidity on feeding rates and selectivity of bluegills. Trans Am Fish Soc 110:446–450. doi: 10.1577/1548-8659(1981)110<446:EOTOFR>2.0.CO;2 CrossRefGoogle Scholar
  24. Gegenfurtner KR, Hawken MJ (1996) Interaction of motion and color in the visual pathways. Trends Neurosci 19:394–401. doi: 10.1016/S0166-2236(96)10036-9 CrossRefPubMedGoogle Scholar
  25. Gerritsen J, Strickler JR (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. J Fish Res Bd Can 34:73–82CrossRefGoogle Scholar
  26. Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA (2015) Non-adaptive plasticity potentiates rapid evolution of gene expression in nature. Nature. doi: 10.1038/nature15256 PubMedGoogle Scholar
  27. Granqvist M, Mattila J (2004) The effects of turbidity and light intensity on the consumption of mysids by juvenile perch (Perca fluviatilis L.). Hydrobiologia 514:93–101CrossRefGoogle Scholar
  28. Gray SM, McDonnell LH, Cinquemani FG, Chapman LJ (2012) As clear as mud: turbidity induces behavioral changes in the African cichlid Pseudocrenilabrus multicolor. Curr Zool 58:146–157Google Scholar
  29. Gregory RS (1993) Effect of turbidity on the predator avoidance behavior of juvenile chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 50:241–246CrossRefGoogle Scholar
  30. Gregory RS, Levings CD (1998) Turbidity reduces predation on migrating juvenile pacific salmon. Trans Am Fish Soc 127:275–285. doi: 10.1577/1548-8659(1998)127<0275:TRPOMJ>2.0.CO;2 CrossRefGoogle Scholar
  31. Gregory RS, Northcote TG (1993) Surface, planktonic, and benthic foraging by juvenile chinook salmon (Oncorhynchus tshawytscha) in turbid laboratory conditions. Can J Fish Aquat Sci 50:233–240CrossRefGoogle Scholar
  32. Gross K, Pasinelli G, Kunc HP (2010) Behavioral plasticity allows short-term adjustment to a novel environment. Am Nat 176:456–464. doi: 10.1086/655428 CrossRefPubMedGoogle Scholar
  33. Hartman EJ, Abrahams MV (2000) Sensory compensation and the detection of predators: the interaction between chemical and visual information. Proc R Soc B 267:571–575. doi: 10.1098/rspb.2000.1039 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Henderson MA, Northcote TG (1985) Visual prey detection and foraging in sympatric cutthroat trout (Salmo clarki clarki) and Dolly Varden (Salvelinus malma). Can J Fish Aquat Sci 42:785–790. doi: 10.1139/f85-100 CrossRefGoogle Scholar
  35. Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on rates of phenotypic change in wild animal populations. Mol Ecol 17:20–29. doi: 10.1111/j.1365-294X.2007.03428.x CrossRefPubMedGoogle Scholar
  36. Heuschele J, Mannerla M, Gienapp P, Candolin U (2009) Environment-dependent use of mate choice cues in sticklebacks. Behav Ecol 20:1223–1227. doi: 10.1093/beheco/arp123 CrossRefGoogle Scholar
  37. Hoffmann M, Tripathi N, Henz SR et al (2007) Opsin gene duplication and diversification in the guppy, a model for sexual selection. Proc R Soc B 274:33–42. doi: 10.1146/annurev.ecolsys.27.1.543 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Horkel JD, Pearson WD (1976) Effects of turbidity on ventilation rates and oxygen consumption of green sunfish, Lepomis cyanellus. Trans Am Fish Soc 105:107–113. doi: 10.1577/1548-8659(1976)105<107:EOTOVR>2.0.CO;2 CrossRefGoogle Scholar
  39. Houde AE (1997) Sex, color, and mate choice in guppies. Princeton University Press, PrincetonGoogle Scholar
  40. Hurtado-Gonzales JL, Loew ER, Uy JAC (2014) Variation in the visual habitat may mediate the maintenance of color polymorphism in a poeciliid fish. PLoS One 9:e101497. doi: 10.1371/journal.pone.0101497 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Kimbell HS, Morrell LJ (2015) Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata. Anim Behav 103:179–185. doi: 10.1016/j.anbehav.2015.02.027 CrossRefGoogle Scholar
  42. Krauss A, Neumeyer C (2003) Wavelength dependence of the optomotor response in zebrafish (Danio rerio). Vision Res 43:1275–1284. doi: 10.1016/S0042-6989(03)00090-7 CrossRefGoogle Scholar
  43. Leahy SM, McCormick MI, Mitchell MD, Ferrari MCO (2011) To fear or to feed: the effects of turbidity on perception of risk by a marine fish. Biol Lett 7:811–813. doi: 10.1098/rsbl.2011.0645 PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lehtiniemi M, Engström-Öst J, Viitasalo M (2005) Turbidity decreases anti-predator behavior in pike larvae, Esox lucius. Environ Biol Fish 73:1–8. doi: 10.1007/s10641-004-5568-4 CrossRefGoogle Scholar
  45. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi: 10.1139/z90-092 CrossRefGoogle Scholar
  46. Luyten PH, Liley NR (1985) Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters). Behaviour 95:164–179. doi: 10.1163/156853985X00109 CrossRefGoogle Scholar
  47. Magurran AE (2005) Evolutionary ecology: the Trinidadian guppy. Oxford University Press, OxfordCrossRefGoogle Scholar
  48. McFarland WN, Munz FW (1975) Part II: the photic environment of clear tropical seas during the day. Vision Res 15:1063–1070. doi: 10.1016/0042-6989(75)90002-4 CrossRefPubMedGoogle Scholar
  49. Meager JJ, Batty RS (2007) Effects of turbidity on the spontaneous and prey-searching activity of juvenile Atlantic cod (Gadus morhua). Phil Trans R Soc B 362:2123–2130PubMedCentralCrossRefPubMedGoogle Scholar
  50. Miner JG, Stein RA (1996) Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative prey. Trans Am Fish Soc 125:97–103. doi: 10.1577/1548-8659(1996)125<0097:DOPAHC>2.3.CO;2 CrossRefGoogle Scholar
  51. Munoz NE, Blumstein DT (2012) Multisensory perception in uncertain environments. Behav Ecol 23:457–462. doi: 10.1093/beheco/arr220 CrossRefGoogle Scholar
  52. Peluc SI, Sillett TS, Rotenberry JT, Ghalambor CK (2008) Adaptive phenotypic plasticity in an island songbird exposed to a novel predation risk. Behav Ecol 19:830–835. doi: 10.1093/beheco/arn033 CrossRefGoogle Scholar
  53. Ranåker L, Nilsson PA, Brönmark C (2012) Effects of degraded optical conditions on behavioral responses to alarm cues in a freshwater fish. PLoS One 7:e38411. doi: 10.1371/journal.pone.0038411 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Reznick DN, Rodd FH, Cardenas M (1996) Life-history evolution of guppies (Poecilia reticulata: poecilidae). IV. Parallelism in life-history phenotypes. Am Nat 147:319–338. doi: 10.2307/2463211 CrossRefGoogle Scholar
  55. Robertson BA, Rehage JS, Sih A (2013) Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28:552–560. doi: 10.1016/j.tree.2013.04.004 CrossRefPubMedGoogle Scholar
  56. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  57. Sandkam B, Young CM, Breden F (2015) Beauty in the eyes of the beholders: color vision is tuned to mate preference in the Trinidadian guppy (Poecilia reticulata). Mol Ecol 24:596–609. doi: 10.1111/mec.13058 CrossRefPubMedGoogle Scholar
  58. Schaerer S, Neumeyer C (1996) Motion detection in goldfish investigated with the optomotor response is “color blind”. Vision Res 36:4025–4034. doi: 10.1016/S0042-6989(96)00149-6 CrossRefPubMedGoogle Scholar
  59. Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480. doi: 10.1016/S0169-5347(02)02580-6 CrossRefGoogle Scholar
  60. Schreck CB, Olla BL, Davis MW (1997) Behavioral responses to stress. In: Iwama GK, Pickering AD, Sumpter JP, Schreck CB (eds) Fish stress and health in aquaculture. Cambridge University Press, Cambridge, pp 145–170Google Scholar
  61. Seehausen O (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811. doi: 10.1126/science.277.5333.1808 CrossRefGoogle Scholar
  62. Sih A (1992) Prey uncertainty and the balancing of antipredator and feeding needs. Am Nat 139:1052–1069CrossRefGoogle Scholar
  63. Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav. doi: 10.1016/j.anbehav.2013.02.017 Google Scholar
  64. Sih A, Stamps J, Yang LH et al (2010) Behavior as a key component of integrative biology in a human-altered world. ICB 50:934–944. doi: 10.1093/icb/icq148 Google Scholar
  65. Sih A, Ferrari MCO, Harris DJ (2011) Evolution and behavioral responses to human-induced rapid environmental change. Evol Appl 4:367–387. doi: 10.1111/j.1752-4571.2010.00166.x PubMedCentralCrossRefPubMedGoogle Scholar
  66. Snell-Rood EC (2013) An overview of the evolutionary causes and consequences of behavioral plasticity. Anim Behav 85:1004–1011. doi: 10.1016/j.anbehav.2012.12.031 CrossRefGoogle Scholar
  67. Stamps J, Groothuis T (2010) The development of animal personality: relevance, concepts and perspectives. Biol Rev 85:301–325. doi:10.1111/j.1469-185X.2009.00103.x/, Scholar
  68. Tilman D, Fargione J, Wolff B et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi: 10.1126/science.1057544 CrossRefPubMedGoogle Scholar
  69. Van Buskirk J (2012) Behavioural plasticity and environmental change. In: Candolin U, Wong BBM (eds). Behavioural responses to a changing world: mechanisms and consequences. pp 145–158Google Scholar
  70. Vinyard GL, O’brien WJ (1976) Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus). J Fish Res Bd Can 33:2845–2849. doi: 10.1139/f76-342 CrossRefGoogle Scholar
  71. Walls M, Kortelainen I, Sarvala J (1990) Prey responses to fish predation in freshwater communities. Ann Zool Fenn 27:183–199. doi: 10.2307/23736038 Google Scholar
  72. Ward MN, Churcher AM, Dick KJ et al (2008) The molecular basis of color vision in colorful fish: four long wave-sensitive (LWS) opsins in guppies (Poecilia reticulata) are defined by amino acid substitutions at key functional sites. BMC Evol Biol 8:210. doi: 10.1186/1471-2148-8-210 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Watson CT, Gray SM, Hoffmann M et al (2011) Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata. J Mol Evol 72:240–252. doi: 10.1007/s00239-010-9426-z CrossRefPubMedGoogle Scholar
  74. Wenger AS, McCormick MI, McLeod IM, Jones GP (2013) Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32:369–374. doi: 10.1007/s00338-012-0991-z CrossRefGoogle Scholar
  75. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  76. Wong BBM, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673. doi: 10.1093/beheco/aru183 CrossRefGoogle Scholar
  77. Yokoyama S (2000) Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments. J Hered 91:215–220. doi: 10.1093/jhered/91.3.215 CrossRefPubMedGoogle Scholar
  78. Yokoyama S (2002) Molecular evolution of color vision in vertebrates. Gene 300:69–78. doi: 10.1016/S0378-1119(02)00845-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sean M. Ehlman
    • 1
    • 2
    Email author
  • Benjamin A. Sandkam
    • 3
  • Felix Breden
    • 3
  • Andrew Sih
    • 1
  1. 1.Department of Environmental Science and PolicyUniversity of California-DavisDavisUSA
  2. 2.Animal Behavior Graduate Group and Center for Population BiologyUniversity of California-DavisDavisUSA
  3. 3.Department of Biological SciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations