Journal of Comparative Physiology A

, Volume 201, Issue 11, pp 1091–1102 | Cite as

Rapid and step-wise eye growth in molting diving beetle larvae

  • Shannon Werner
  • Elke K. BuschbeckEmail author
Original Paper


However complex a visual system is, the size (and growth rate) of all its components—lens, retina and nervous system—must be precisely tuned to each other for the system to be functional. As organisms grow, their eyes must be able to achieve and maintain emmetropia, a state in which photoreceptors receive sharp images of objects that are at infinity. While there has been ample research into how vertebrates coordinate eyes growth, this has never been addressed in arthropods with camera eyes, which tend to grow dramatically and typically in a step-wise manner with each molt (ecdysis). Here, we used histological and optical methods to measure how the larval eyes of Sunburst Diving Beetles (Thermonectus marmoratus, Coleoptera, Dytiscidae) grow, and how well optical and morphological parameters match, during the dramatic growth that occurs between two consecutive larval stages. We find that the eye tubes of the principal eyes of T. marmoratus grow substantially around molt, with the vitreous-like crystalline cone contributing the most to the overall growth. Lenses also reform relatively quickly, undergoing a period of dysfunction and then regaining the ability to project sharp images onto the retina around 8 h post-molt.


Emmetropia Eye growth Arthropod Vision Stemmata 



We thank Annette Stowasser for allowing us to use her MATLAB code and for her many insightful comments to the manuscript, and more generally the Buschbeck lab group for valuable intellectual and editorial feedback. This work was supported by the National Science Foundation under Grants IOS1050754 and IOS1456757 to EKB.


  1. Baldwin J, Johnsen S (2011) Effects of molting on the visual acuity of the blue crab Callinectes sapidus. J Exp Biol 214(18):3055–3061. doi: 10.1242/jeb.056861 CrossRefPubMedGoogle Scholar
  2. Buschbeck EK (2014) Escaping compound eye ancestry: the evolution of single-chamber eyes in holometabolous larvae. J Exp Biol 217:2818–2824CrossRefPubMedGoogle Scholar
  3. Buschbeck EK, Sbita SJ, Morgan RC (2007) Scanning behavior by larvae of the predacious diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae) enlarges visual field prior to prey capture. J Comp Physiol A 193(9):973–982CrossRefGoogle Scholar
  4. Cottrell CB (1962) The imaginal ecdysis of blowflies. Observations of the hydrostatic mechanisms involved in digging and expansion. J Exp Biol 39:431–448Google Scholar
  5. Dall W, Smith DM (1978) Water uptake at ecdysis in western rock lobster. J Exp Mar Biol Ecol 35(2):165–176. doi: 10.1016/0022-0981(78)90074-6 CrossRefGoogle Scholar
  6. Darwin CH (1859) On the origin of species by means of natural selection. John Murray, LondonGoogle Scholar
  7. Eckert M (1968) Hell-Dunkel-Adaption in aconen Appositionsaugen der Insekten. Zool Jb Physiol Bd 74:102–120Google Scholar
  8. Feller KD, Cohen JH, Cronin TW (2015) Seeing double: visual physiology of double-retina eye ontogeny in stomatopod crustaceans. J Comp Physiol A 201(3):331–339. doi: 10.1007/s00359-014-0967-2 CrossRefGoogle Scholar
  9. Fenk LM, Heidlmayr K, Lindner P, Schmid A (2010) Pupil size in spider eyes is linked to post-ecdysal lens growth. PLoS One. doi: 10.1371/journal.pone.0015838 PubMedCentralPubMedGoogle Scholar
  10. Flitcroft DI (2013) Is myopia a failure of homeostasis? Exp Eye Res 114:16–24. doi: 10.1016/j.exer.2013.02.008 CrossRefPubMedGoogle Scholar
  11. Flitcroft DI (2014) Emmetropisation and the aetiology of refractive errors. Eye 28(2):169–179. doi: 10.1038/eye.2013.276 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Frolov R, Immonen EV, Vahasoyrinki M, Weckstrom M (2012) Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style. J Neurosci 32(47):16821–16831. doi: 10.1523/jneurosci.2612-12.2012 CrossRefPubMedGoogle Scholar
  13. Gilbert C (1994) Form and function of stemmata in the larvae of holometabolous insects. Annu Rev Entomol 39:323–349CrossRefGoogle Scholar
  14. Gordon RA, Donzis PB (1985) Refractive development of the human eye. Arch Ophthalmol 103(6):785–789CrossRefPubMedGoogle Scholar
  15. Graham B, Judge SJ (1999) Normal development of refractive state and ocular component dimensions in the marmoset (Callithrix jacchus). Vis Res 39(2):177–187. doi: 10.1016/s0042-6989(98)00188-6 CrossRefPubMedGoogle Scholar
  16. Hofstetter HW (1969) Emmetropization—bioloical process or mathematical artifact. Am J Optom Arch Am Acad Optom 46(6):447–450CrossRefPubMedGoogle Scholar
  17. Howlett MHC, McFadden SA (2007) Emmetropization and schematic eye models in developing pigmented guinea pigs. Vis Res 47(9):1178–1190. doi: 10.1016/j.visres.2006.12.019 CrossRefPubMedGoogle Scholar
  18. Hung LF, Crawford MLJ, Smith EL (1995) Spectacle lenses alter eye growth and the refractive status of young monkeys. Nat Med 1(8):761–765. doi: 10.1038/nm0895-761 CrossRefPubMedGoogle Scholar
  19. Insausti TC, Lazzari CR (2000) An ocellar “pupil” that does not change with light intensity, but with the insect age in Triatoma infestans. Mem Inst Oswaldo Cruz 95(5):743–746. doi: 10.1590/s0074-02762000000500024 CrossRefPubMedGoogle Scholar
  20. Keskinen E, Takaku Y, Meyer-Rochow VB, Hariyama T (2002) Postembryonic eye growth in the seashore isopod Ligia exotica (Crustacea, Isopoda). Biol Bull 202(3):223–231. doi: 10.2307/1543472 CrossRefPubMedGoogle Scholar
  21. Kroger RHH, Wagner HJ (1996) The eye of the blue acara (Aequidens pulcher, Cichlidae) grows to compensate for defocus due to chromatic aberration. J Comp Physiol A 179(6):837–842CrossRefPubMedGoogle Scholar
  22. Land MF (1969) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphanatidae) in relation to visual optics. J Exp Biol 51:443–470PubMedGoogle Scholar
  23. Land MF (1985) The morphology and optics of spider eyes. In: Barth FG (ed) Neurobiology of Arachnids. Springer, Berlin, pp 53–78CrossRefGoogle Scholar
  24. Land MF, Nilsson DE (2012) Animal Eyes, 2nd edn. In: Animal Eyes. (Oxford Animal Biology Series)Google Scholar
  25. Larsen JS (1971) Sagittal growth of the eye. 4. Ultrasonic measurement of axial length of eye from birth to puberty. Acta Ophthalmol 49(6):873CrossRefGoogle Scholar
  26. Maksimovic S, Cook TA, Buschbeck EK (2009) Spatial distribution of opsin-encoding mRNAs in the tiered larval retinas of the sunburst diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae). J Exp Biol 212(23):3781–3794. doi: 10.1242/jeb.031773 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Mandapaka K, Morgan RC, Buschbeck EK (2006) Twenty-eight retinas but only twelve eyes: an anatomical analysis of the larval visual system of the diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae). J Comp Neurol 497(2):166–181. doi: 10.1002/cne.20974 CrossRefPubMedGoogle Scholar
  28. Mangum C (1992) Physiological aspects of molting in the blue crab Callinectes sapidus. Am Zool 32(3):459–469CrossRefGoogle Scholar
  29. Mark HH (1972) Emmetropization—physical aspects of a statistical phenomenon. Ann Ophthalmol 4(5):393–401PubMedGoogle Scholar
  30. McBrien NA, Barnes DA (1984) A review and evalauation of theories of refractive error development. Ophthalmic Physiol Opt 4(3):201–213. doi: 10.1111/j.1475-1313.1984.tb00357.x CrossRefPubMedGoogle Scholar
  31. McFadden SA, Howlett MHC, Mertz JR (2004) Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vis Res 44(7):643–653. doi: 10.1016/j.visres.2003.11.002 CrossRefPubMedGoogle Scholar
  32. Menzi U (1987) Visual adaptations in nocturnal and diurnal ants. J Comp Physiol A 160(1):11–21. doi: 10.1007/bf00613437 CrossRefGoogle Scholar
  33. Neufeld DS, Cameron JN (1994) Mechanism op the net uptake of water in molting blue crabs (Callinectes sapidus) acclimated to high and low salinities. J Exp Biol 188:11–23PubMedGoogle Scholar
  34. Oshea M, Adams ME (1981) Pentapeptide (proctolin) associated with an identified neuron. Science 213(4507):567–569. doi: 10.1126/science.611369 CrossRefGoogle Scholar
  35. Phillips JR, McBrien NA (2004) Pressure-induced changes in axial eye length of chick and tree shrew: significance of myofibroblasts in the sclera. Investig Ophthalmol Vis Sci 45(3):758–763. doi: 10.1167/iovs.03-0732 CrossRefGoogle Scholar
  36. Schaeffel F, Glasser A, Howland HC (1988) Accomodation, refractive error and eye growth in chickens. Vis Res 28(5):639. doi: 10.1016/0042-6989(88)90113-7 CrossRefPubMedGoogle Scholar
  37. Schiff H, Dore B, Boido M (2007) Morphology of adaptation and morphogenesis in stomatopod eyes. Ital J Zool 74(2):123–134. doi: 10.1080/11250000701245866 CrossRefGoogle Scholar
  38. Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vis Res 44(16):1857–1867. doi: 10.1016/j.visres.2004.03.011 CrossRefPubMedGoogle Scholar
  39. Sorsby A, Leary GA (1969) A longitudinal study of refraction and its components during growth. Spec Rep Ser 309:1–41 (Medical Research Council, Great Britain) Google Scholar
  40. Stowasser A, Buschbeck EK (2014) Multitasking in an eye: how the unusual organization of the principal larval eyes of Thermonectus marmoratus allows for far and near vision and might aid in depth perception. J Exp Biol 217:2509–2516CrossRefPubMedGoogle Scholar
  41. Stowasser A, Rapaport A, Layne JE, Morgan RC, Buschbeck EK (2010) Biological bifocal lenses with image separation. Curr Biol 20(16):1482–1486. doi: 10.1016/j.cub.2010.07.012 CrossRefPubMedGoogle Scholar
  42. Troilo D (1992) Neonatal eye growth and emmetropisation—a literature review. Eye 6:154–160 (London) CrossRefPubMedGoogle Scholar
  43. Troilo D, Wallman J (1991) The regulation of eye growth and refractive state—an experimental study of emmetropization. Vis Res 31(7–8):1237–1250. doi: 10.1016/0042-6989(91)90048-a CrossRefPubMedGoogle Scholar
  44. Troilo D, Howland HC, Judge SJ (1993) Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus). Vis Res 33(10):1301–1310. doi: 10.1016/0042-6989(93)90038-x CrossRefPubMedGoogle Scholar
  45. Walcott B (1971) Cell movement on light adaptation in retina of lethcerus (Belostomatdae, Hemiptera). Z Vgl Physiol 74(1):1. doi: 10.1007/bf00297785 CrossRefGoogle Scholar
  46. Wallman J, Winawer J (2004) Homeostasis of eye growth and the question of myopia. Neuron 43(4):447–468. doi: 10.1016/j.neuron.2004.08.008 CrossRefPubMedGoogle Scholar
  47. Werner S (2014) Thesis: how do stemmata grow? The pursuit of emmetropia in the face of stepwise growth. OhioLINK Electronic Theses and Dissertations Center, University of CincinnatiGoogle Scholar
  48. Wilder MN, Huong DTT, Jasmani S, Jayasankar V, Kaneko T, Aida K, Hatta T, Nemoto S, Wigginton A (2009) Hemolymph osmolality, ion concentrations and calcium in the structural organization of the cuticle of the giant freshwater prawn Macrobrachium rosenbergii: changes with the molt cycle. Aquaculture 292(1–2):104–110. doi: 10.1016/j.aquaculture.2009.03.034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations