Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus

Abstract

In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells’ modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barlow HB (1961) Possible principles underlying the transformation of sensory messages. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge, pp 217–234

    Google Scholar 

  2. Benda J, Hennig RM (2008) Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci 24(2):113–136

    Article  PubMed  Google Scholar 

  3. Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15(11):2523–2564

    Article  PubMed  Google Scholar 

  4. Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell UP, Ithaca, pp 227–261

    Google Scholar 

  5. Borst A, Haag J (1996) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci 3(4):313–336

    CAS  Article  PubMed  Google Scholar 

  6. Borst A, Theunissen FE (1999) Information theory and neural coding. Nat Neurosci 2(11):947–957

    CAS  Article  PubMed  Google Scholar 

  7. Boyan GS, Fullard JH (1988) Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth. J Comp Physiol A 164(2):251–258

    CAS  Article  PubMed  Google Scholar 

  8. Boyan GS, Williams JLD (1982) Auditory neurones in the brain of the cricket Gryllus bimaculatus (De Geer): ascending interneurones. J Insect Physiol 28(6):493–501

    Article  Google Scholar 

  9. Bürck M, van Hemmen JL (2009) Neuronal identification of signal periodicity by balanced inhibition. Biol Cybern 100(4):261–270

    Article  PubMed  Google Scholar 

  10. Bush SL, Schul J (2006) Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons. J Comp Physiol A 192(2):113–121

    Article  Google Scholar 

  11. Cariani PA (2001) Specialist and generalist strategies in sensory evolution. Artif Life 7(2):211–214

    CAS  Article  PubMed  Google Scholar 

  12. Clemens J, Wohlgemuth S, Ronacher B (2012) Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper. J Neurosci 32(29):10053–10062

    CAS  Article  PubMed  Google Scholar 

  13. Doherty JA (1985) Temperature coupling and ’trade-off’ phenomena in the acoustic communication system of the cricket, Gryllus bimaculatus De Geer (Gryllidae). J Exp Biol 114(1):17–35

    Google Scholar 

  14. Eggermont JJ, Wang X (2011) Temporal coding in auditory cortex. In: Winer JA, Schreiner CE (eds) The Auditory Cortex. Springer, New York, pp 309–328

    Google Scholar 

  15. Eilts-Grimm K, Wiese K (1984) An electrical analogue model for frequency dependent lateral inhibition refering to the omega neurons in the auditory pathway of the cricket. Biol Cybern 51:45–52

    Article  Google Scholar 

  16. Engel TA, Schimansky-Geier L, Herz AVM, Schreiber S, Erchova I (2008) Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100(3):1576–1589

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560(Pt 1):89–110

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. Farris H, Mason A, Hoy RR (2004) Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units. Hear Res 193(1–2):121–133

    Article  PubMed  Google Scholar 

  19. Faulkes Z, Pollack GS (2000) Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets Teleogryllus oceanicus. J Neurophysiol 84(3):1247–1255

    CAS  PubMed  Google Scholar 

  20. Fettiplace R (1987) Electrical tuning of hair cells in the inner ear. Trends Neurosci 10(10):421–425

    Article  Google Scholar 

  21. Fullard JH, Ratcliffe JM, Guignion C (2005) Sensory ecology of predator-prey interactions: responses of the AN2 interneuron in the field cricket, Teleogryllus oceanicus to the echolocation calls of sympatric bats. J Comp Physiol A 191(7):605–618

    Article  Google Scholar 

  22. Gade S, Herlufsen H (1987) Use of weighting functions in DFT/FFT analysis (Part I). Brüel Kjær Technical Rev 3:1–28

    Google Scholar 

  23. Gerstein GL, Kiang NY (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. Gimbarzevsky B, Miura RM, Puil E (1984) Impedance profiles of peripheral and central neurons. Can J Physiol Pharmacol 62(4):460–462

    CAS  Article  PubMed  Google Scholar 

  25. Goertzel G (1958) An algorithm for the evaluation of finite trigonometric series. Am Math Mon 65(1):34–35

    Article  Google Scholar 

  26. Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163(1):135–143

    CAS  Article  PubMed  Google Scholar 

  27. Hennig RM (2003) Acoustic feature extraction by cross-correlation in crickets? J Comp Physiol A 189(8):589–598

    CAS  Article  Google Scholar 

  28. Hennig RM (2009) Walking in Fourier’s space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. J Comp Physiol A 195(10):971–987

    Article  Google Scholar 

  29. Hennig RM, Franz A, Stumpner A (2004) Processing of auditory information in insects. Microsc Res Tech 63(6):351–374

    CAS  Article  PubMed  Google Scholar 

  30. Hildebrandt KJ (2014) Neural maps in insect versus vertebrate auditory systems. Curr Opin Neurobiol 24(1):82–87

    CAS  Article  PubMed  Google Scholar 

  31. Horseman G, Huber F (1994) Sound localisation in crickets. I. Contralateral inhibition of an ascending auditory interneurone. J Comp Physiol A 175(4):389–398

    Article  Google Scholar 

  32. Hoy RR (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37(10):2316–2323

    CAS  PubMed  Google Scholar 

  33. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  34. Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5):216–222

    CAS  Article  PubMed  Google Scholar 

  35. Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76(2):698–714

    CAS  PubMed  Google Scholar 

  36. Imaizumi K, Pollack GS (2001) Neural representation of sound amplitude by functionally different auditory receptors in crickets. J Acoust Soc Am 109(3):1247–1260

    CAS  Article  PubMed  Google Scholar 

  37. Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14(6–7):883–894

    CAS  Article  PubMed  Google Scholar 

  38. Jones JP, Palmer LA (1987) An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    CAS  PubMed  Google Scholar 

  39. Koch C (1984) Cable theory in neurons with active, linearized membranes. Biol Cybern 50(1):15–33

    CAS  Article  PubMed  Google Scholar 

  40. Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior. J Neurosci 32(28):9601–9612

    CAS  Article  PubMed  Google Scholar 

  41. Kostarakos K, Hedwig B (2015) Pattern recognition in field crickets: concepts and neural evidence. J Comp Physiol A 201(1):73–85

    Article  Google Scholar 

  42. Libersat F, Murray J, Hoy RR (1994) Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus (de Geer) and Teleogryllus oceanicus: a neuroethological analysis. J Comp Physiol A 174:485–494

    CAS  Article  PubMed  Google Scholar 

  43. Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21(9):3215–3227

    CAS  PubMed  Google Scholar 

  44. Marsat G, Pollack GS (2004) Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. J Neurophysiol 92(2):939–948

    CAS  Article  PubMed  Google Scholar 

  45. Marsat G, Pollack GS (2005) Effect of the temporal pattern of contralateral inhibition on sound localization cues. J Neurosci 25(26):6137–6144

    CAS  Article  PubMed  Google Scholar 

  46. Marsat G, Pollack GS (2006) A behavioral role for feature detection by sensory bursts. J Neurosci 26(41):10542–10547

    CAS  Article  PubMed  Google Scholar 

  47. Nabatiyan A, Poulet JFA, de Polavieja GG, Hedwig B (2003) Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system. J Neurophysiol 90(4):2484–2493

    CAS  Article  PubMed  Google Scholar 

  48. Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226(4677):992–994

    CAS  Article  PubMed  Google Scholar 

  49. Nolen TG, Hoy RR (1986) Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors. J Comp Physiol A 159(4):423–439

    CAS  Article  PubMed  Google Scholar 

  50. Pollack GS, Kim JS (2013) Selective phonotaxis to high sound-pulse rate in the cricket Gryllus assimilis. J Comp Physiol A 199(4):285–293

    Article  Google Scholar 

  51. Popov AV, Shuvalov VF, Markovich A (1976) The spectrum of the calling signals, phonotaxis, and the auditory system in the cricket Gryllus bimaculatus. Neurosci Behav Physiol 7:56–62

    CAS  Article  PubMed  Google Scholar 

  52. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16(8):1661–1687

    Article  PubMed  Google Scholar 

  53. Reiss RF (1962) A theory and simulation of rhythmic behavior due to reciprocal inhibition in small nerve nets. AIEE-IRE ’62 (Spring): Proceedings of the May 1–3, 1962, spring joint computer conference. ACM, New York, pp 171–194

  54. Rheinlaender J, Kalmring K, Popov AV, Rehbein H (1976) Brain projections and information processing of biologically significant sounds by two large ventral-cord neurons of Gryllus bimaculatus DeGeer (Orthoptera, Gryllidae). J Comp Physiol A 110(3):251–269

    Article  Google Scholar 

  55. Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89(5):2538–2554

    Article  PubMed  Google Scholar 

  56. Roeder KD (1962) The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Anim Behav 10(3–4):300–304

    Article  Google Scholar 

  57. Rose D, Blakemore C (1974) Effects of bicuculline on functions of inhibition in visual cortex. Nature 249(455):375–377

    CAS  Article  PubMed  Google Scholar 

  58. Rössert C, Moore LE, Straka H, Glasauer S (2011) Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. J Neurosci 31(23):8359–8372

    Article  PubMed  Google Scholar 

  59. Sabourin P, Pollack GS (2010) Temporal coding by populations of auditory receptor neurons. J Neurophysiol 103(3):1614–1621

    Article  PubMed  Google Scholar 

  60. Sabourin P, Gottlieb H, Pollack GS (2008) Carrier-dependent temporal processing in an auditory interneuron. J Acoust Soc Am 123(5):2910–2917

    Article  PubMed  Google Scholar 

  61. Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155(2):171–185

    Article  Google Scholar 

  62. Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis: I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163(5):621–631

    Article  Google Scholar 

  63. Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51(7):557–569

    Article  Google Scholar 

  64. Schreiber S, Erchova I, Heinemann U, Herz AVM (2004) Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol 92(1):408–415

    Article  PubMed  Google Scholar 

  65. Schreiber S, Samengo I, Herz AVM (2009) Two distinct mechanisms shape the reliability of neural responses. J Neurophysiol 101(5):2239–2251

    Article  PubMed  Google Scholar 

  66. Schreiner CE, Langner G (1988) Coding of temporal patterns in the central auditory nervous system. In: Gerald M, Edelman WMC, Einar Gall W (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 337–361

    Google Scholar 

  67. Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-triggered neural characterization. J Vis 6(4):484–507

    Article  PubMed  Google Scholar 

  68. Selverston AI, Kleindienst HU, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5(5):1283–1292

    CAS  PubMed  Google Scholar 

  69. Sharafi N, Benda J, Lindner B (2013) Information filtering by synchronous spikes in a neural population. J Comput Neurosci 34(2):285–301

    PubMed Central  Article  PubMed  Google Scholar 

  70. Smith EC, Lewicki MS (2006) Efficient auditory coding. Nature 439(7079):978–982

    CAS  Article  PubMed  Google Scholar 

  71. Sysel P, Rajmic P (2012) Goertzel algorithm generalized to non-integer multiples of fundamental frequency. EURASIP J Adv Signal Process 2012(1):1–8

    Article  Google Scholar 

  72. Todd BS, Andrews DC (1999) The identification of peaks in physiological signals. Comput Biomed Res 32(4):322–335

    CAS  Article  PubMed  Google Scholar 

  73. Treves A (1993) Mean-field analysis of neuronal spike dynamics. Network 4(3):259–284

    Article  Google Scholar 

  74. Triblehorn JD, Ghose K, Bohn K, Moss CF, Yager DD (2008) Free-flight encounters between praying mantids (Parasphendale agrionina) and bats (Eptesicus fuscus). J Exp Biol 211(4):555–562

    CAS  Article  PubMed  Google Scholar 

  75. Tunstall DN, Pollack GS (2005) Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos. J Comp Physiol A 191(4):363–372

    Article  Google Scholar 

  76. Urdapilleta E, Samengo I (2015) Effects of spike-triggered negative feedback on receptive-field properties. J Comput Neurosci 38(2):405–425

    Article  PubMed  Google Scholar 

  77. van Hateren JH, Laughlin SB (1990) Membrane parameters, signal transmission, and the design of a graded potential neuron. J Comp Physiol A 166(4):437–448

    Article  PubMed  Google Scholar 

  78. Webb B, Wessnitzer J, Bush S, Schul J, Buchli J, Ijspeert A (2007) Resonant neurons and bushcricket behaviour. J Comp Physiol A 193(2):285–288

    Article  Google Scholar 

  79. Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behavior and neurobiology. Cornell UP, Ithaca, pp 310–339

    Google Scholar 

  80. Wiese K, Eilts K (1985) Evidence for matched frequency dependence of bilateral inhibition in the auditory pathway of Gryllus bimaculatus. Zool Jahrb Abt allg Zool Physiol Tiere 89(2):181–201

    Google Scholar 

  81. Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus DeGeer). J Comp Physiol A 127(1):11–28

    Article  Google Scholar 

  82. Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146(2):161–173

    Article  Google Scholar 

  83. Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273(5281):1542–1544

    CAS  Article  PubMed  Google Scholar 

  84. Yager DD (2012) Predator detection and evasion by flying insects. Curr Opin Neurobiol 22(2):201–207

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Federal Ministry of Education and Research, Germany (01GQ1001A, 01GQ0901, 01GQ0972, 01GQ1403) and the Deutsche Forschungsgemeinschaft (SFB618, GRK1589/1). We are grateful to Wei Wu for valuable discussion. We thank Manuel Gersbacher, Michael Reichert, Frederic Römschied, Jan-Hendrik Schleimer and Vanessa Stempel for helpful comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florian Rau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments conducted in this study comply with the current laws of Germany and the Principles of animal care, publication No. 86–23, revised 1985 of the National Institute of Health.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rau, F., Clemens, J., Naumov, V. et al. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus . J Comp Physiol A 201, 1075–1090 (2015). https://doi.org/10.1007/s00359-015-1036-1

Download citation

Keywords

  • Auditory processing
  • Acoustic communication
  • Neuron models
  • Band-pass filtering
  • Negative feedback